Electronic Supplementary Information

Facile fabrication of homogeneous and gradient plasmonic arrays with tunable optical properties *via* thermally regulated surface charge density

Shunsheng Ye,^a Hongyu Wang,^a Hongyang Su,^a Lingxia Chang,^a Shuli Wang,^a Xuemin Zhang,^b

Junhu Zhang,*a and Bai Yanga

^a State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin

University, Changchun 130012, P. R. China. *E-mail: zjh@jlu.edu.cn

^b Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110004,

P. R. China

Fig. S1 XPS survey scans of untreated PS before (black line) and after (red line) PDDA adsorption. XPS survey scans of oxygen plasma-treated PS before (blue line) and after (magenta line) PDDA adsorption.

Fig. S2 Water contact angle measurements on (a) an oxygen plasma-modified PS film without thermal annealing and (b) an untreated PS film.

Fig. S3 (a) Dependence of wavelengths of the short- and long-wavelength resonance bands on distance.(b) Intensities of the two resonance bands plotted against distance. The squares are fitted with a sigmoidal curve and the circles are fitted with part of a sigmoidal curve.

Fig. S4 Au nanoparticle-modified PS films transferred onto (a) skin and (b) a curved surface.

Fig. S5 (a) TEM image of the Au nanoparticles synthesized *via* the seeded growth method. The mean size is about 18 nm. (b) UV-vis extinction spectrum of the Au nanoparticle sol.

Calculation of Enhancement Factor

The enhancement factor (EF) was calculated based on the following equation:

$$EF = \frac{I_{SERS}}{I_{bulk}} \times \frac{N_{bulk}}{N_{SERS}}$$
(1)

where I_{SERS} and I_{bulk} are the intensity of characteristic bands in SERS and normal Raman spectra(see Figure S6), respectively; N_{bulk} and N_{SERS} are the number of detected molecules in the laser spot volume in normal and SERS measurements, respectively. N_{bulk} can be estimated as follows:

$$N_{bulk} = \frac{\rho A h}{M} N_A \times 90\% \tag{2}$$

where ρ is the density of MB powder (1.14 g/cm³), A is the area of laser spot (ca. 1µm²), h is the penetration depth of the laser (ca. 1µm), M is the molar mass of MB (319.86 g/mol), and N_A is the Avogadro constant. N_{SERS} is calculated from the following equation:

$$N_{SERS} = \frac{N_d A A_N \gamma}{\sigma} \tag{3}$$

where N_d is the number density of our 2D Au nanoparticle arrays, A_N is the area of a single Au nanoparticle (calculated as ca. 452 nm²), γ is the coverage of a MB monolayer on one Au nanoparticle (assumed to be 30%), and σ is the area occupied by one MB molecule (0.8 nm²)^[1], respectively. By substituting equation 2 and 3 into equation 1, we get:

Fig. S6 Normal Raman spectra of MB excited by 633 nm and 532 nm laser lines.

References

1 G. Laurent, N. Félidj, J. Aubard, G. Lévi, Phys. Rev., B, 2005, 71, 045430.