Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Impact of the number of *o*-carboranyl ligands on the photophysical and electroluminescent properties of iridium(III) cyclometalates

Nguyen Van Nghia,^{a,†} Sunghee Park,^{b,†} Youngjoon An,^a Junseong Lee,^c Jaehoon Jung,^a Seunghyup Yoo,^{b,*} and Min Hyung Lee^{a,*}

^a Department of Chemistry and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea

^b School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea

^c Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea

	3b (0.5C ₄ H ₁₀ O)	4b	5b (0.5CH ₂ Cl ₂)·(CH ₃ OH)
formula	C ₇₆ H ₈₂ B ₂₀ Ir ₂ N ₆ O	$C_{39}H_{48}B_{20}IrN_3$	$C_{87}H_{130}B_{60}Cl_2Ir_2N_6O_2$
formula weight	1696.07	967.20	2395.86
crystal system	Orthorhombic	Monoclinic	Monoclinic
space group	Pna21	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> 2(1)/ <i>c</i>
<i>a</i> (Å)	9.7157(1)	13.8079(10)	16.4471(3)
<i>b</i> (Å)	23.9775(4)	12.4815(9)	13.8499(2)
<i>c</i> (Å)	16.1910(2)	27.3661(19)	26.5812(4)
α(°)	90	90	90
$eta(^\circ)$	90	104.5200(10)	92.9650(10)
$\gamma(^{\circ})$	90	90	90
$V(Å^3)$	3771.83(9)	4565.7(6)	6046.84(17)
Ζ	2	4	4
$ ho_{\rm calc} ({ m g}{ m cm}^{-3})$	1.493	1.407	1.316
μ (mm ⁻¹)	3.574	2.959	2.289
<i>F</i> (000)	1684	1920	2396
$T(\mathbf{K})$	100(2)	100(2)	100(2)
scan mode	ϕ and ω	ϕ and ω	ϕ and ω
hl-l rongo	–11→11, –28→21,	–14→16, –14→14,	–20→19, –16→16,
nki lange	–19→19	-32→31	-32→32
measd reflns	23529	31265	78218
unique reflns [R _{int}]	6609 [0.0513]	7975 [0.0367]	11482 [0.0363]
Reflns used for refinement	6609	7975	11482
refined parameters	499	570	809
R1 ^{<i>a</i>} (I > 2 σ (I))	0.0369	0.0258	0.0264
wR2 ^{b} all data	0.0569	0.0673	0.0700
GOF on F^2	1.089	1.031	1.059
$ ho_{\rm fin}$ (max/min) (e Å ⁻³)	0.813/-0.957	1.041/-1.559	1.057/-0.391

Table S1. Crystallographic data and parameters for 3b–5b

 $\overline{{}^{a} \operatorname{R1} = \sum ||Fo| - |Fc|| / \sum |Fo|} \cdot w \operatorname{R2} = \left[\left\{ \sum w (Fo^{2} - Fc^{2})^{2} \right\} / \left\{ \sum w (Fo^{2})^{2} \right\} \right]^{1/2}.$

Fig. S1 Crystal structures of **3b–5b** (left to right) (40% thermal ellipsoids). H atoms and solvent molecules are omitted for clarity.

	3b	4b	5b
Lengths			
Ir(1)–N(1)	2.127(7)	2.116(3)	2.138(3)
Ir(1)–N(2)	2.136(6)	2.130(2)	2.127(3)
Ir(1)–N(3)	2.138(7)	2.125(2)	2.122(3)
Ir(1)–C(2)	2.014(9)	2.021(3)	2.010(3)
Ir(1)–C(13)	2.024(10)	2.010(2)	2.013(3)
Ir(1)–C(24)	2.001(6)	2.009(3)	2.017(3)
Angles			
C(2)–Ir(1)–N(1)	79.3(3)	79.54(10)	78.82(12)
C(13)–Ir(1)–N(2)	79.5(3)	79.53(9)	79.72(11)
C(24)–Ir(1)–N(3)	79.3(3)	79.60(10)	79.67(11)

Table S2. Selected bond lengths (Å) and angles (deg) for 3b–5b

Fig. S2 The aromatic region of the ¹H NMR spectra of **3a–5a** in CDCl₃.

Fig. S3 The aromatic region of the ¹H NMR spectra of **3b–5b** in CDCl₃.

Fig. S4 TGA curves of 3a–5a and 3b–5b.

Fig. S5 Normalized PL spectra of 3a–5a and 3b–5b in toluene at 77 K.

Fig. S6 UV/Vis absorption 5.0×10^{-5} M, left) and PL spectra (2.0×10^{-5} M, right) of (a) **3a–5a** and (b) **3b–5b** in THF at 298 K.

Fig. S7 Emission decay curves of 3a–5a and 3b–5b in toluene at 298 K.

Fig. S8 PL spectra of PMMA film doped with 3a–5a and 3b-5b (4 wt% of Ir).

Fig. S9 Cyclic voltammograms of (a) **3a–5a** and (b) **3b–5b** showing reduction (left) and oxidation (right) $(1.0 \times 10^{-3} \text{ M in DMF}, \text{ scan rate} = 100-200 \text{ mV/s}).$

DFT computational results

Fig. S10 Molecular orbitals of **3a** optimized by IEFPCM-B3LYP/6-31G(d) calculations (solvent: toluene) for its ground (S_0) and lowest-lying triplet (T_1) states, respectively (Isovalue = 0.03).

			1	1				
МО	Energy	Ir	Pyd1	Pyd2	Pyd3	Ph1 (MeCB)	Ph2	Ph3
LUMO+3	-1.09	2.00	49.41	16.78	17.40	8.21(1.94)	2.06	2.21
LUMO+2	-1.31	4.36	0.47	27.51	43.11	0.22(0.04)	9.50	14.79
LUMO+1	-1.36	3.33	7.76	39.00	23.22	2.63(0.10)	14.89	9.07
LUMO	-1.51	2.22	56.78	3.53	4.35	27.90(1.03)	2.09	2.09
НОМО	-5.21	48.80	1.80	4.03	3.33	3.98(0.22)	16.69	21.14
HOMO-1	-5.30	41.19	2.24	4.74	3.35	1.47(0.01)	24.56	22.45
HOMO-2	-5.43	46.73	5.11	1.31	3.91	31.19(2.83)	5.27	3.65
НОМО-3	-6.12	3.46	0.53	7.42	17.67	0.94(0.08)	23.54	46.37

Table S3. Molecular orbital energies (in eV) and contributions of moieties (in %) for **3a** at the ground state (S_0) geometry optimized by IEFPCM-B3LYP/6-31G(d) calculation (solvent: toluene). The contributions of MeCB moieties are presented in parentheses.

Table S4. Molecular orbital energies (in eV) and contributions of moieties (in %) for **3a** at the lowestlying triplet state (T_1) geometry optimized by IEFPCM-B3LYP/6-31G(d) calculation (solvent: toluene). The contributions of MeCB moieties are presented in parentheses.

МО	Energy	Ir	Pyd1	Pyd2	Pyd3	Ph1 (MeCB)	Ph2	Ph3
LUMO+3	-1.08	1.92	62.42	6.01	14.52	10.31(2.29)	0.80	1.72
LUMO+2	-1.32	3.43	0.74	1.44	68.56	0.30(0.03)	0.56	24.94
LUMO+1	-1.51	4.22	53.69	10.06	0.68	24.96(0.92)	5.22	0.24
LUMO	-1.64	2.62	10.63	48.87	1.65	5.40(0.19)	29.44	1.21
НОМО	-5.09	41.65	1.94	10.67	1.49	1.47(0.04)	32.13	10.61
HOMO-1	-5.30	39.04	1.30	5.88	4.88	2.44(0.04)	13.31	33.11
НОМО-2	-5.48	48.43	5.15	1.07	3.41	32.67(2.91)	3.88	2.48
НОМО-3	-6.07	9.39	1.15	20.47	6.64	0.90(0.05)	46.30	15.12

Table S5. Computed absorption and phosphorescence emission wavelengths (λ_{calc} in nm) and contributions of metal-to-ligand charge transfer (MLCT, in %) to the transition for **3a** from IEFPCM-TD-B3LYP/6-31G(d) calculations at the ground (S₀) and lowest-lying triplet state (T₁) optimized geometries, respectively.

State	$\lambda_{calc.} / nm$	$f_{\text{calc.}}$	Major contribution	MLCT(%)
S_1	421.9	0.0037	HOMO \rightarrow LUMO (94%)	46.58
S_2	404.7	0.0129	HOMO \rightarrow LUMO+1 (90%)	45.47
S_3	402.1	0.0221	HOMO-1 \rightarrow LUMO (75%)	38.97
			HOMO \rightarrow LUMO+2 (13%)	44.44
S_4	398.8	0.0014	HOMO \rightarrow LUMO+2 (79%)	44.44
			HOMO-1 \rightarrow LUMO (14%)	38.97
S_5	385.5	0.0844	HOMO-2 \rightarrow LUMO (63%)	44.51
			HOMO-1 \rightarrow LUMO+1 (23%)	37.86
S_6	381.4	0.0553	HOMO-1 \rightarrow LUMO+1 (44%)	37.86
			HOMO-1 \rightarrow LUMO+2 (27%)	36.83
			HOMO-2 \rightarrow LUMO (24%)	44.51
T_1	503.0 ^a	0.0000	HOMO \rightarrow LUMO (70%)	39.03
			HOMO \rightarrow LUMO+1 (10%)	37.43

^a For the adiabatic transition corresponding to the 0–0 phosphorescence.

Fig. S11 Molecular orbitals of **4a** optimized by IEFPCM-B3LYP/6-31G(d) calculations (solvent: toluene) for its ground (S_0) and lowest-lying triplet (T_1) states, respectively (Isovalue = 0.03).

			I I	···· 1···				
МО	Energy	Ir	Pyd1	Pyd2	Pyd3	Ph1 (MeCB)	Ph2 (MeCB)	Ph3
LUMO+3	-1.25	1.81	34.81	33.05	14.38	5.73(1.12)	5.96(1.25)	1.87
LUMO+2	-1.48	3.81	2.32	1.95	66.23	0.83(0.06)	0.58(0.02)	24.20
LUMO+1	-1.60	4.28	34.59	30.77	0.43	15.17(0.55)	13.56(0.48)	0.17
LUMO	-1.69	1.59	28.26	31.64	3.56	14.63(0.52)	17.09(0.68)	2.03
НОМО	-5.43	46.21	1.07	2.93	5.63	4.87(0.25)	2.98(0.19)	35.89
HOMO-1	-5.59	46.01	4.19	3.01	2.87	15.40(1.25)	15.07(1.30)	10.90
HOMO-2	-5.66	44.82	4.71	3.52	2.47	18.37(1.70)	20.43(1.71)	2.28
HOMO-3	-6.29	3.67	1.02	0.54	23.90	2.09(0.11)	0.84(0.02)	67.81

Table S6. Molecular orbital energies (in eV) and contributions of moieties (in %) for **4a** at the ground state (S_0) geometry optimized by IEFPCM-B3LYP/6-31G(d) calculation (solvent: toluene). The contributions of MeCB moieties are presented in parentheses.

Table S7. Molecular orbital energies (in eV) and contributions of moieties (in %) for **4a** at the lowestlying triplet state (T_1) geometry optimized by IEFPCM-B3LYP/6-31G(d) calculation (solvent: toluene). The contributions of MeCB moieties are presented in parentheses.

МО	Energy	Ir	Pyd1	Pyd2	Pyd3	Ph1 (MeCB)	Ph2 (MeCB)	Ph3
LUMO+3	-1.24	1.74	32.96	43.07	6.24	5.11(1.01)	7.60(1.50)	0.78
LUMO+2	-1.60	3.72	57.04	5.39	3.09	26.11(0.92)	2.11(0.07)	1.55
LUMO+1	-1.65	4.18	2.23	49.00	12.40	1.06(0.04)	23.60(0.90)	6.59
LUMO	-1.79	2.13	5.91	10.12	44.51	3.95(0.16)	5.39(0.20)	27.62
НОМО	-5.29	37.09	0.66	2.20	13.44	4.20(0.21)	0.91(0.03)	41.26
HOMO-1	-5.61	45.66	4.85	1.81	4.27	24.17(2.06)	9.18(0.66)	7.34
НОМО-2	-5.69	45.75	3.74	4.72	1.75	9.09(0.84)	28.46(2.47)	3.19
НОМО-3	-6.23	11.31	1.28	1.49	24.78	3.50(0.19)	1.31(0.03)	56.10

Table S8. Computed absorption and phosphorescence emission wavelengths (λ_{calc} in nm) and contributions of metal-to-ligand charge transfer (MLCT, in %) to the transition for **4a** from IEFPCM-TD-B3LYP/6-31G(d) calculations at the ground (S₀) and lowest-lying triplet state (T₁) optimized geometries, respectively.

State	$\lambda_{calc.} / nm$	$f_{\text{calc.}}$	Major contribution	MLCT(%)
S_1	411.4	0.0063	HOMO \rightarrow LUMO (91%)	44.62
S_2	404.7	0.0021	HOMO \rightarrow LUMO+1 (90%)	41.93
S_3	390.9	0.0365	HOMO \rightarrow LUMO+2 (68%)	42.40
			HOMO-1 \rightarrow LUMO (25%)	44.42
S_4	388.2	0.0179	HOMO-1 \rightarrow LUMO (57%)	44.42
			HOMO \rightarrow LUMO+2 (25%)	42.40
			HOMO-1 \rightarrow LUMO+1 (12%)	41.73
S_5	381.1	0.0045	HOMO-1 \rightarrow LUMO+1 (58%)	41.73
			HOMO-2 \rightarrow LUMO (18%)	43.23
S_6	378.0	0.1135	HOMO-2 \rightarrow LUMO (74%)	43.23
			HOMO-1 \rightarrow LUMO+1 (16%)	41.73
T_1	498.3 ^a	0.0000	HOMO \rightarrow LUMO (69%)	34.96
			HOMO \rightarrow LUMO+1 (14%)	34.09

^a For the adiabatic transition corresponding to the 0–0 phosphorescence.

Fig. S12 Molecular orbitals of **5a** optimized by IEFPCM-B3LYP/6-31G(d) calculations (solvent: toluene) for its ground (S_0) and lowest-lying triplet (T_1) states, respectively (Isovalue = 0.03).

				purce in p				
MO	Energy	Ir	Pyd1	Pyd2	Pyd3	Ph1 (MeCB)	Ph2 (MeCB)	Ph3 (MeCB)
LUMO+3	-1.41	1.65	28.15	26.48	26.62	5.09(0.96)	4.57(0.79)	4.79(0.89)
LUMO+2	-1.73	4.18	40.96	12.77	12.03	17.86(0.61)	5.62(0.19)	5.57(0.22)
LUMO+1	-1.74	4.17	0.35	32.02	33.12	0.14(0.01)	14.50(0.54)	14.65(0.49)
LUMO	-1.84	1.16	23.50	19.65	19.40	13.03(0.47)	11.03(0.42)	10.94(0.40)
НОМО	-5.71	51.08	3.12	3.16	3.14	12.01(0.94)	12.29(0.96)	12.35(0.96)
HOMO-1	-5.84	43.25	2.23	4.29	4.26	3.53(0.13)	14.01(1.31)	24.84(2.15)
HOMO-2	-5.84	43.19	5.03	2.92	2.94	24.78(2.26)	14.23(1.09)	3.34(0.23)
НОМО-3	-6.66	4.35	1.64	10.35	18.39	1.91(0.08)	25.47(0.25)	37.19(0.37)

Table S9. Molecular orbital energies (in eV) and contributions of moieties (in %) for **5a** at the ground state (S_0) geometry optimized by IEFPCM-B3LYP/6-31G(d) calculation (solvent: toluene). The contributions of MeCB moieties are presented in parentheses.

Table S10. Molecular orbital energies (in eV) and contributions of moieties (in %) for **5a** at the lowestlying triplet state (T_1) geometry optimized by IEFPCM-B3LYP/6-31G(d) calculation (solvent: toluene). The contributions of MeCB moieties are presented in parentheses.

МО	Energy	Ir	Pyd1	Pyd2	Pyd3	Ph1 (MeCB)	Ph2 (MeCB)	Ph3 (MeCB)
LUMO+3	-1.37	1.67	11.55	30.87	38.88	2.40(0.54)	4.97(0.86)	7.03(1.25)
LUMO+2	-1.74	3.63	0.88	55.30	8.90	0.37(0.01)	26.23(0.96)	3.62(0.12)
LUMO+1	-1.79	3.11	2.69	7.91	53.42	1.31(0.06)	4.13(0.14)	26.26(0.95)
LUMO	-2.10	3.04	52.68	1.32	2.30	37.02(1.09)	1.29(0.06)	1.17(0.04)
НОМО	-5.62	43.66	11.02	1.62	2.17	26.34(1.90)	9.53(0.71)	2.91(0.15)
HOMO-1	-5.84	40.88	6.35	4.21	2.44	14.43(1.20)	18.87(1.54)	9.34(0.74)
НОМО-2	-5.87	43.75	1.72	3.79	4.90	2.60(0.04)	11.09(1.04)	28.62(2.45)
НОМО-3	-6.56	12.65	25.24	2.70	2.85	45.99(0.52)	4.97(0.17)	4.83(0.08)

Table S11. Computed absorption and phosphorescence emission wavelengths (λ_{calc} in nm) and contributions of metal-to-ligand charge transfer (MLCT, in %) to the transition for **5a** from IEFPCM-TD-B3LYP/6-31G(d) calculations at the ground (S₀) and lowest-lying triplet state (T₁) optimized geometries, respectively.

State	$\lambda_{calc.} / nm$	$f_{calc.}$	Major contribution	MLCT(%)
S_1	397.7	0.0088	HOMO \rightarrow LUMO (97%)	49.92
S_2	390.1	0.0056	HOMO \rightarrow LUMO+1 (95%)	46.91
S_3	389.9	0.0056	HOMO \rightarrow LUMO+2 (95%)	46.90
S_4	375.0	0.0560	HOMO-1 \rightarrow LUMO (91%)	42.09
S_5	374.2	0.0636	HOMO-2 \rightarrow LUMO (91%)	42.03
S_6	370.3	0.0058	HOMO-1 \rightarrow LUMO+2 (44%)	39.07
			HOMO-2 \rightarrow LUMO+1 (42%)	39.02
T_1	489.9ª	0.0000	HOMO \rightarrow LUMO (73%)	40.62
			HOMO-3 \rightarrow LUMO (12%)	9.61

^a For the adiabatic transition corresponding to the 0–0 phosphorescence.

Fig. S13 (a) EL spectra of devices (**D3-II**, **D4-II**, and **D6-II**) fabricated with CBP host doped with **3a**, **4a**, and **6** at 7 wt% as an emitter, and (b) current efficiency–current density (η_{CE} –*J*) curves.

Fig. S14 PL spectra and absolute PLQYs of PNB-CBP film doped with 3a-5a (8 wt% of Ir).

(a) ITO/PEDOT:PSS/PNB-CBP:3a (8wt%)

25 00

(b) ITO/PEDOT:PSS/PNB-CBP:4a (8wt%)

2. 00

Fig. S15 Atomic force microscope (AFM) images of 2.5 μ m × 2.5 μ m area of spin-coated PNB-CBP films on ITO/PEDOT:PSS (AI4083) substrates doped with (a) **3a**, (b) **4a**, (c) **5a**, and (d) **6** at 8 wt%.