Electronic Supplementary Information

Probing Lattice Vibration and Surface Electronic State in Layered

(NH₄)₂V₃O₈ Single Crystal

Haiping Chen,^a Zhongti Sun,^b Chengming Wang,^c Xiuling Li,^b Xusheng Zheng,^a Youkui Zhang,^a Qun He,^a Xiaojun Wu,^{*b} and Li Song^{*a}

* <u>song2012@ustc.edu.cn</u> (L. Song); <u>xjwu@ustc.edu.cn</u> (X.J. Wu)

Fig. S1. The angle dependence of Raman peak intensity from 180° to 360° , (a) and (b) parallel polarization Z(XX)Z, (c) and (d) vertical polarization Z(XX)Z.

Fig. S2 (a)Viewed from c axis, (b) viewed from b axis.

Fig. S3. The comparison of experimental Raman peaks with the calculated phonon frequency at Γ k-point (marked as red lines) for $(NH_4)_2V_3O_8$.

Fig. S4. The structures of (001) surface of $(NH_4)_2V_3O_8$ with (a) NH_4^+ ions and $V_3O_8^{2-}$ surface, and (b) NH_4^+ ions surface with with half number of NH_4^+ ions removed. (c) and (d) are the corresponding potential profiles, (d) is the optimized potential.