Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

## **Electronic Supporting Information**

## A Zn<sup>2+</sup>-coordinated boronate dipyrrin as a chemodosimeter toward hydrogen peroxide

Kaori Sakakibara, Yuki Takahashi, Ryuhei Nishiyabu and Yuji Kubo\*

Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan

E-mail; yujik@tmu.ac.jp

## Table of contents

| Fig  | . S1 | Change in the absorbance spectra of $1$ upon adding incremental amount of $Zn(OAc)_2$ in EtOH                                   | -SI-2 |
|------|------|---------------------------------------------------------------------------------------------------------------------------------|-------|
| Fig  | . S2 | ESI-MS spectra of the EtOH solution of 1 in the presence of 3 equiv. of Zn (OAc) <sub>2</sub>                                   | SI-2  |
| Fig  | . S3 | FAB-MS spectra of solid isolated from the EtOH solution of 1 and Zn(OAc) <sub>2</sub>                                           | SI-3  |
| Fig  | . S4 | Time-course analysis of absorption spectra of $\mathbf{Zn-1}_2$ after adding $H_2O_2$ in EtOH/CHCl <sub>3</sub> (1:1 v/v)       | ·SI-3 |
| Fig  | . S5 | Change in absorption intensity of <b>1</b> at 581 nm and 597 nm as a function of time in the presence of                        |       |
|      |      | Zn(OAc) <sub>2</sub> after adding an excess amount of H <sub>2</sub> O <sub>2</sub> in EtOH                                     | ·SI-4 |
| Fig  | . S6 | ESI-MS spectra of the EtOH solution of 1 and Zn(OAc) <sub>2</sub> in 12 h after adding of H <sub>2</sub> O <sub>2</sub> in EtOH | ·SI-4 |
| Fig. | . S7 | ESI-MS spectra of the EtOH solution of 1 in the presence of 3 equiv. of $Zn$ (OAc) <sub>2</sub> when 5 hours                    |       |
|      |      | passed after adding H <sub>2</sub> O <sub>2</sub>                                                                               | ·SI-5 |
| Fig. | . S8 | Time-dependent change in absorption intensity of 1 with $Zn(OAc)_2$ by adding $H_2O_2$ in the                                   |       |
|      |      | presence of TBAOH                                                                                                               | SI-5  |
| Fig  | . S9 | A plot of a change in absorption intensity of $1$ in the presence of $Zn(OAc)_2$ as a function of                               |       |
|      |      | H <sub>2</sub> O <sub>2</sub> concentration added in EtOH                                                                       | SI-6  |
| Fig  | . S1 | <b>0</b> A plot of a change in fluorescence intensity of <b>1</b> in the presence of $Zn(OAc)_2$ as a function                  |       |
|      |      | of H <sub>2</sub> O <sub>2</sub> concentration added in EtOH                                                                    | SI-6  |
| Fig  | . S1 | 1 Colorimetric response of 1 and $Zn^{2+}$ -coated filter paper exposed to varying amounts of $H_2O_2$ vapor.                   | S1-7  |
| Fig  | . S1 | <b>2</b> <sup>13</sup> C NMR spectrum of <b>1</b> in CDCl <sub>3</sub>                                                          | SI-7  |
| Fig  | . S1 | <b>3</b> <sup>13</sup> C NMR spectrum of <b>1</b> in CDCl <sub>3</sub>                                                          | SI-8  |
| Fig  | . S1 | <b>4</b> FAB-MS spectrum of <b>1</b>                                                                                            | SI-8  |



**Fig. S1**. Change in the absorbance of **1** at 538 nm upon adding incremental amount of  $Zn(OAc)_2$  in EtOH. The data was acquired in 5 min after treating with  $Zn(OAc)_2$ .



**Fig. S2**. ESI-MS spectra in the positive mode of the EtOH solution of **1** in the presence of 3 equiv. of Zn (OAc)<sub>2</sub>. The data were acquired in 5 min at 100 °C.



**Fig. S3.** FAB-MS spectra of solid isolated from the evaporation of EtOH solution where **1** (50  $\mu$ mol) and Zn(OAc)<sub>2</sub> (50  $\mu$ mol) were dissolved. (The plausible structure of **Zn-1**<sub>2</sub> has shown).



Fig. S4. Time-course analysis of absorption spectra of Zn-1<sub>2</sub> (10  $\mu$ M) as a plausible complex after adding H<sub>2</sub>O<sub>2</sub> (1mM) in EtOH/CHCl<sub>3</sub> (1:1 v/v).



**Fig. S5**. Change in absorption intensity of **1** at 581 nm (a) and 597 nm (b) as a function of time in the presence of 3 equiv. of  $Zn(OAc)_2$  after adding an excess amount of  $H_2O_2$  (1 mM) in EtOH at 25 °C.



**Fig. S6**. ESI-MS spectra in the negative mode of the EtOH solution of **1** (10  $\mu$ M) and Zn(OAc)<sub>2</sub> (30  $\mu$ M) in 12 h after adding of H<sub>2</sub>O<sub>2</sub> in EtOH.



**Fig. S7**. ESI-MS spectra in the negative mode at 100 °C of the EtOH solution of **1** in the presence of 3 equiv. of Zn (OAc)<sub>2</sub> when 5 hours passed after adding H<sub>2</sub>O<sub>2</sub>.



**Fig. S8**. (a) Time-dependent change in absorption band of **1** (10  $\mu$ M) with Zn(OAc)<sub>2</sub> (30  $\mu$ M) by adding H<sub>2</sub>O<sub>2</sub> (50  $\mu$ M) in the presence of TBAOH (1 mM). (b) A plot of ln(*A* –*A*<sub>lim</sub>)/(*A*<sub>0</sub> –*A*<sub>lim</sub>) as a function of time.



**Fig. S9**. A plot of a change in absorption intensity of **1** (10  $\mu$ M) in the presence of Zn(OAc)<sub>2</sub> (30  $\mu$ M) as a function of H<sub>2</sub>O<sub>2</sub> concentration added in EtOH at 25 °C. The data were acquired in 30 min after adding H<sub>2</sub>O<sub>2</sub>.



Fig. S10. A plot of a change in fluorescence intensity of 1 (10  $\mu$ M) in the presence of Zn(OAc)<sub>2</sub> (30  $\mu$ M) as a function of H<sub>2</sub>O<sub>2</sub> concentration added in EtOH at 25 °C. The data were acquired in 30 min after adding H<sub>2</sub>O<sub>2</sub>.  $\lambda_{ex} = 564$  nm.



Fig. S11. Colorimetric response of 1 and  $Zn^{2+}$ -coated filter paper exposed to varying amounts of H<sub>2</sub>O<sub>2</sub> vapor.  $\Delta E$  values were determined using an image-processing program. The dotted line in the graph represents the regression line obtained from dynamic range of the titration curve.

The H<sub>2</sub>O<sub>2</sub> vapor detection limit was determined by using relationship between H<sub>2</sub>O<sub>2</sub>-induced color difference ( $\Delta E$ ) and H<sub>2</sub>O<sub>2</sub> concentration (ppb) where  $\Delta E$  values were acquired using an image processing program. Standard deviation ( $\sigma$ ) of the blank measurements were determined from five individual samples to be 1.804. The regression line was obtained in dynamic range of the titration curve (**Fig. S11**), indicating 0.07386 as a slope (*m*). The detection limit was then calculated from  $3\sigma/m$  to be 73.3 ppb.



Fig. S12. <sup>1</sup>H NMR spectrum of 1 in CDCl<sub>3</sub>.



Fig. S13. <sup>13</sup>C NMR spectrum of 1 in CDCl<sub>3</sub>.



Fig. S14. FAB-MS spectrum in the positive mode of 1.