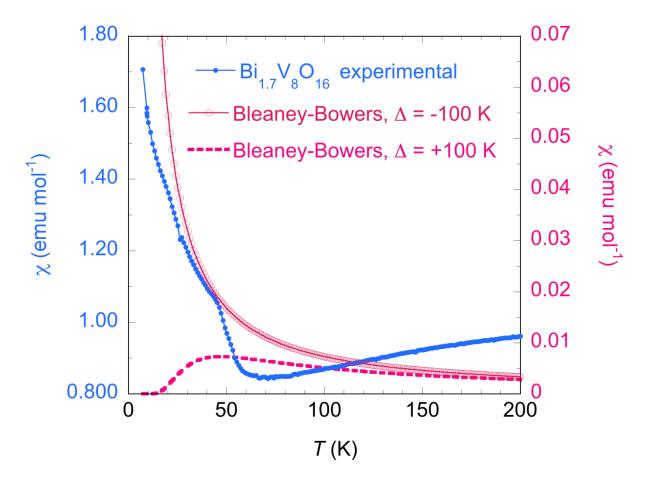
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017


Metal-insulator transition tuned by magnetic field in Bi_{1.7}V₈O₁₆ hollandite

Amber M. Larson, Brandon Wilfong, Pouya Moetakef, Craig M. Brown,
Peter Zavalij, and Efrain E. Rodriguez

Electronic Supporting Information

Figure S1: Room temperature Rietveld refinement of synchrotron X-ray diffraction data (11BM). Observed data is in green, calculated fit is in black, the difference curve is orange, and expected *hkl* peak locations are in navy. Refinement was carried out with all five temperature datasets simultaneously. $R_{wp} = 17.84 \%$. The inset shows the low Q region, where satellite peaks corresponding to a charge density wave (CDW) with a propagation vector of $\mathbf{q} = (0\ 0\ 0.20(1))$ are indicated with asterisks. The broad satellite close to $\sim 1.3\ A^{-1}$ in Q corresponds to that of the (002) reflection.

Figure S2: Magnetic susceptibilities for the Bleaney-Bowers model juxtaposed with the observed magnetic susceptibility for $Bi_{1.7}V_8O_{16}$. The models are presented for the ferromagnetic case where Δ = -100 K and the antiferromagnetic case where Δ = 100 K.