Supporting Information

Vapor-phase synthesis of sub-15 nm hybrid gate dielectrics for organic thin film transistors

Hyejeong Seong, Junhwan Choi, Bong Jun Kim, Hongkeun Park, and Sung Gap Im*

Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Republic of Korea

*e-mail: sgim@kaist.ac.kr.

|--|

		ALD	iCVD	
Dimension & control of reactor	Shape of reactor	Disk		
	Height of reactor	1 ~ 3 cm		
	Flow delivery	By mass flow controller (MFC)		
Process condition	Initiation of reaction	By injecting reactant	By thermal initiation	
	Process pressure	10 ~ 1000 mTorr	50 ~ 1000 mTorr	
	Substrate temperature	60 ~ 400 °C	10 ~ 50 °C	
	Deposition rate	0.5 ~ 1 nm/min	0.5 ~ 200 nm/min	

Fig. S1 Schematic of the single chamber system of ALD and iCVD.

Fig. S2 Photograph of custom-built flexibility test equipment used in the manuscript.

Table S2 Optimized process condition for ALD and iCVD

	Process temperature	Gas reaction time	Gas purge time	Deposition rate
	(°C)	(s)	(s)	(nm/min)
Al ₂ O ₃ ALD	90	5	15	0.60

	Process temperature (°C)	Process pressure (mTorr)	Gas injection ratio (sccm : sccm)	Deposition rate (nm/min)
pV3D3 iCVD	40	300	2.5 : 1	1.0
	90	1500		0.8

Fig. S3 Applied strain vs. J_i of MIM devices with ALD Al₂O₃ dielectric

Fig. S4 (a) Device structure of DNTT TFTs fabricated in this work with different thickness compositions of dielectric layers: Single layer with (i) ALD Al₂O₃ and (ii) iCVD pV3D3, and (iii to v) hybrid layer with various thickness compositions. (b) Output characteristics of corresponding TFTs with dielectric layers from (i) to (v).

Fig. S5. Shelf-life stability of DNTT TFTs in ambient condition up to 49 days. C_i of device was 50 nF/cm² (39.0 nm of pV3D3 was used as a dielectric layer).

Fig. S6 Transfer and output characteristics of IGZO TFTs made with (a) ALD Al₂O₃ and (b) ALD Al₂O₃ and iCVD pV3D3 as dielectric layers, respectively.