## Supporting Information

# Fabricating a super stable luminescent chemosensor with multi-stimuli-response to metal ions and small organic molecules by turn-on and turn-off effects 

Yan Yang, ${ }^{\text {a,b }}$ Lian Chen, *a Feilong Jiang, ${ }^{a}$ Xiuyan Wan, ${ }^{\mathrm{a}, \mathrm{b}}$ Muxin Yu, ${ }^{\mathrm{a}, \mathrm{b}}$ Zhen Cao, ${ }^{\mathrm{a}, \mathrm{b}}$ Tan Jing, ${ }^{\text {a,b }}$ and Maochun Hong*
${ }^{a}$ State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
${ }^{b}$ University of the Chinese Academy of Sciences, Beijing, 10049, China

## Contents

## Additional Experimental Section

Table S1. Crystal data and refinement results for compounds $\mathbf{1}$ and $\mathbf{2}$.
Fig. S1 Coordination environment of the $\mathrm{Eu}^{3+}$ ion in compound 1.
Fig. S2 The coordination mode of [L] $]^{4-}$ in 1: $\mu_{8}$-bridging mode.
Fig. S3 The encapsulated counter cations $\left[\mathrm{H}_{2} \mathrm{NMe}_{2}\right]^{+}$in channel A.
Fig. S4 (a) The simplified 6 -connected node of the binuclear unit [Eu $\mathrm{Eu}_{2}\left(\mu_{2}-\right.$ $\left.\mathrm{COO})_{2}(\mathrm{COO})_{2}\right]$. (b) The simplified 3-connected node of the ligand. (c) The (3, 6)connected topological two-nodal net with the Schläfli symbol $\left\{4^{2} \cdot 6\right\}_{2}\left\{4^{4} \cdot 6^{2} \cdot 8^{7} \cdot 10^{2}\right\}$ in compound 1.

Fig. S5 PXRD patterns of compounds 1 and 2.
Fig. S6 The TGA curves of compounds $\mathbf{1}$ and $\mathbf{2}$.
Fig. S7 Room-temperature luminescent spectra of (a) the ligand $\mathrm{H}_{4} \mathrm{~L}$ (excitation: dot, $\lambda_{\mathrm{em}}=425 \mathrm{~nm}$; emission: solid, $\lambda_{\mathrm{ex}}=350 \mathrm{~nm}$ ) (b) compound 1 in solid state. (c) The luminescence decay curves compound $\mathbf{1}$ at room temperature.

Fig. S8 The Stern-Volmer plot between the enhancing effect and the concentration of $\mathrm{Cd}^{2+}$ ions at low concentrations.

Fig. S9 Comparison of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ luminescence intensity of $\mathbf{1}$ in aqueous solutions incorporating (a) $\mathrm{Mn}^{2+}$ ions and (b) $\mathrm{Cd}^{2+}$ ions in different times when excited at 324 nm.

Fig. S10 PXRD patterns of $\mathbf{1}$ after dispersed in different $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{\mathrm{x}}\left(\mathrm{x}=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cu}^{2+}\right.$, $\left.\mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Al}^{3+}, \mathrm{Ag}^{+}, \mathrm{Fe}^{3+}\right)$ in aqueous water solvents.

Table S2 The ICP results of compound $\mathbf{1}$ and $\mathrm{M}^{\mathrm{n}+} \mathbf{1}\left(\mathrm{M}^{\mathrm{n}+}=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}\right.$, $\mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Al}^{3+}, \mathrm{Ag}^{+}, \mathrm{Fe}^{3+}$, respectively).

Scheme S1. Simplified views of the probable luminescent enhancing and quenching mechanisms of compound $\mathbf{1}$ by $\mathrm{Cd}^{2+}$ and $\mathrm{Mn}^{2+}$ ions.

Fig. S11 Comparison of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ luminescence intensity of $\mathbf{1}$ in the presence of diethyl ether vapor in different times.

Fig. S12 PXRD patterns of the samples before and after the regeneration studies.
Fig. S13 (a) Solid-state luminescent spectra of compound 2 and (b) the luminescence decay curves compound $\mathbf{2}$ at room temperature.

Fig. S14 Comparison of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ luminescence intensity of $\mathbf{2}$ in aqueous solutions incorporating different metal ions when excited at 331 nm .

Fig. S15 Comparison of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ luminescence intensity of 2a introduced into various pure solvent emulsions when excited at 331 nm .

Fig. S16 Comparison of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ luminescence intensity of $\mathbf{2}$ in the presence of diethyl ether vapour at different times excited at 331 nm .

Fig. S17 Cycles of sensing diethyl ether vapor for compound 2.
Table S3. Selected bond lengths ( $\AA$ ) and bond angles $\left({ }^{\circ}\right)$ for compounds $\mathbf{1}$ and 2.

## Additional Experimental Section

In order to confirm that the mechanism for compound $\mathbf{1}$ as such a multi-stimuliresponsive sensor of metal ions and small molecules is due to the features of the framework itself, compound $2\left(\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]\left[\mathrm{TbL}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right)$, the isomorphic structure of compound $\mathbf{1}$, was synthesized similarly to $\mathbf{1}$ except for the use of $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as starting material. Elemental analysis (\%): Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{TbN}_{2} \mathrm{O}_{10.5}$, C, 42.28; H, 3.39; N, 4.29. Found: C, 42.42; H, 3.46; N, 4.35. The PXRD pattern indicates that $\mathbf{1}$ and $\mathbf{2}$ are isostructural (Fig. S5).

The CCDC numbers for compound 2 is 1481268. Crystal data and structure refinements for compound $\mathbf{2}$ are also listed in Table S1, which are available in CIF files in the supporting information.

Table S1. Crystal data and refinement results for compounds $\mathbf{1}$ and 2.

|  | 1 | 2 |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{EuN}_{2} \mathrm{O}_{10.5}$ | $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{TbN}_{2} \mathrm{O}_{10.5}$ |
| Formula weight | 646.39 | 653.36 |
| Crystal system | monoclinic | monoclinic |
| space group | C2/c | C2/c |
| $a(\AA)$ | 19.6675 (3) | 19.6084 (4) |
| $b(\AA)$ | 11.9457 (2) | 11.9016 (3) |
| $c(\AA)$ | 21.9773 (4) | 21.9364 (5) |
| $\alpha\left({ }^{\circ}\right)$ | 90 | 90 |
| $\beta\left({ }^{\circ}\right)$ | 97.166 (2) | 97.186 (2) |
| $\gamma\left({ }^{\circ}\right)$ | 90 | 90 |
| Volume ( $\AA^{3}$ ) | 5123.06 (15) | 5079.1 (2) |
| T (K) | 100 | 100 |
| Z | 8 | 8 |
| F (000) | 2216 | 2248 |
| $\mathrm{R}_{1}(\mathrm{I}>2 \sigma(\mathrm{I})$ ) | 0.0316 | 0.0291 |
| $\mathrm{wR}_{2}$ (reflections) | 0.1023 | 0.0748 |
| ${ }^{\mathrm{a}} R_{1}=\Sigma\| \| \mathrm{F}_{\mathrm{o}}\left\|-\left\|\mathrm{F}_{\mathrm{c}}\right\| / \Sigma\right\| \mathrm{F}_{\mathrm{o}} \mid \cdot{ }^{\mathrm{b}} \omega R_{2}=\left[\Sigma \omega\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma \omega\left(\mathrm{F}_{0}{ }^{2}\right)^{2}\right]^{1 / 2}$. |  |  |



Fig. S1 Coordination environment of the $\mathrm{Eu}^{3+}$ ion in compound 1. All H atoms and solvent molecules are omitted. Inset: coordination polyhedron of $\mathrm{Eu}^{3+}$ ion. (Symmetry codes: A, $3 / 2-x, 3 / 2-y, 1-z ; \mathrm{B}, 3 / 2-x, 1 / 2+y, 1 / 2-z ; \mathrm{C}, 2-x, 1-y, 1-z$. Eu ${ }^{3+}$, green; O, red; N , blue; C, gray).


Fig. S2 The coordination mode of [L] $]^{4-}$ in 1: $\mu_{8}$-bridging mode.


Fig. S3 The encapsulated counter cations $\left[\mathrm{H}_{2} \mathrm{NMe}_{2}\right]^{+}$in channel A.


Fig. S4 (a) The simplified 6 -connected node of the binuclear unit [ $\mathrm{Eu}_{2}\left(\mu_{2}-\right.$ $\left.\mathrm{COO})_{2}(\mathrm{COO})_{2}\right]$. (b) The simplified 3-connected node of the ligand. (c) The $(3,6)-$ connected topological two-nodal net with the Schläfli symbol $\left\{4^{2} \cdot 6\right\}_{2}\left\{4^{4} \cdot 6^{2} \cdot 8^{7} \cdot 10^{2}\right\}$ in compound 1.


Fig. S5 PXRD patterns of compounds 1 and 2.


Fig. S6 The TGA curves of compounds $\mathbf{1}$ and $\mathbf{2}$.




Fig. S7 Room-temperature luminescent spectra of (a) the ligand $\mathrm{H}_{4} \mathrm{~L}$ (excitation: dot, $\lambda_{\mathrm{em}}=425 \mathrm{~nm}$; emission: solid, $\lambda_{\mathrm{ex}}=350 \mathrm{~nm}$ ) (b) compound $\mathbf{1}$ in solid state. (c) The luminescence decay curves compound $\mathbf{1}$ at room temperature.

Table S2. The ICP results of compound $\mathbf{1}$ and $\mathrm{M}^{\mathrm{n}+} \mathbf{- 1}\left(\mathrm{M}^{\mathrm{n}+}=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}\right.$,
$\mathrm{Cd}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Al}^{3+}, \mathrm{Ag}^{+}, \mathrm{Fe}^{3+}$, respectively)

| Compound | $\mathrm{Eu}^{3+}(\mathrm{wt} \%)$ | $\mathrm{M}^{\mathrm{n}+}(\mathrm{wt} \%)$ | Compound | $\mathrm{Eu}^{3+}(\mathrm{wt} \%)$ | $\mathrm{M}^{\mathrm{n}+}(\mathrm{wt} \%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 19.03 | - | $\mathrm{Pb}^{2+}-1$ | 16.28 | 3.98 |
| $\mathbf{C d}^{2+} \mathbf{- 1}$ | $\mathbf{1 8 . 7 4}$ | $\mathbf{5 . 8 7}$ | $\mathrm{Co}^{2+}-1$ | 20.59 | 0.325 |
| $\mathrm{~Tb}^{3+}-1$ | 18.10 | 0.84 | $\mathrm{Na}^{+}-1$ | 17.78 | 3.03 |
| $\mathrm{~K}^{+}-1$ | 18.04 | 3.61 | $\mathrm{Fe}^{3+}-1$ | 17.25 | 0.55 |
| $\mathrm{Ag}^{+}-1$ | 17.44 | 7.73 | $\mathrm{Ni}^{2+}-1$ | 21.36 | 0.081 |
| $\mathrm{Mg}^{2+}-1$ | 18.28 | 0.0607 | $\mathrm{Cu}^{2+}-1$ | 17.51 | 1.30 |
| $\mathrm{Al}^{3+}-1$ | 20.14 | 0.36 | $\mathrm{Zn}^{2+}-1$ | 19.46 | 3.00 |
| $\mathrm{Cr}^{3+-}-1$ | 19.80 | 0.134 | $\mathbf{M n}^{2+} \mathbf{- 1}$ | $\mathbf{1 9 . 7 0}$ | $\mathbf{2 . 9 8}$ |



Fig. S8 The Stern-Volmer plot between the enhancing effect and the concentration of $\mathrm{Cd}^{2+}$ ions at low concentrations.


Fig. S9 Comparison of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ luminescence intensity of $\mathbf{1}$ in aqueous solutions incorporating (a) $\mathrm{Mn}^{2+}$ ions and (b) $\mathrm{Cd}^{2+}$ ions in different times when excited at 324 nm.


Fig. S10 PXRD patterns of $\mathbf{1}$ after dispersed in different $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{\mathrm{x}}\left(\mathrm{x}=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cu}^{2+}\right.$, $\left.\mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Al}^{3+}, \mathrm{Ag}^{+}, \mathrm{Fe}^{3+}\right)$ in aqueous water solvents.

Scheme S1. Simplified views of the probable luminescent enhancing and quenching mechanisms of compound $\mathbf{1}$ by $\mathrm{Cd}^{2+}$ and $\mathrm{Mn}^{2+}$ ions.


Fig. S11 Comparison of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ luminescence intensity of $\mathbf{1}$ in the presence of diethyl ether vapour in different times.


Fig. S12 PXRD patterns of the samples before and after the regeneration studies.


Fig. S13 (a) Solid-state luminescent spectra of compound 2 and (b) the luminescence decay curves compound 2 at room temperature.


Fig. S14 Comparison of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ luminescence intensity of $\mathbf{2}$ in aqueous solutions incorporating different metal ions when excited at 331 nm .


Fig. S15 Comparison of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ luminescence intensity of $\mathbf{2 a}$ introduced into various pure solvent emulsions when excited at 331 nm .


Fig. S16 Comparison of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ luminescence intensity of $\mathbf{2}$ in the presence of diethyl ether vapour at different times excited at 331 nm .


Fig. S17 Cycles of sensing diethyl ether vapor for compound $\mathbf{2}$.

Table S3. Selected bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ for compounds $\mathbf{1}$ and $\mathbf{2}$.

| Bond | Dist. | Bond | Dist. |
| :---: | :---: | :---: | :---: |
| Eu1-O4 $4^{\text {i }}$ | 2.338 (3) | Eu1-O7ii | 2.488 (3) |
| Eu1-O8 | 2.378 (3) | Eu1-O5 ${ }^{\text {iii }}$ | 2.489 (3) |
| Eu1-O1 | 2.383 (3) | Eu1-O9 | 2.583 (4) |
| Eu1-O2 ${ }^{\text {ii }}$ | 2.422 (3) | Eu1-O88 ${ }^{\text {ii }}$ | 2.632 (3) |
| Eu1-O6 ${ }^{\text {iii }}$ | 2.445 (4) |  |  |
| Angle | $\left({ }^{\circ}\right.$ ) | Angle | $\left({ }^{\circ}\right.$ ) |
| O4-EEu1-O8 | 146.11 (12) | O2ii-Eu1-O5 ${ }^{\text {iii }}$ | 78.78 (11) |
| O4i-Eu1-O1 | 74.27 (12) | O6 ${ }^{\text {iii-Eu1-O5 }}$ - ${ }^{\text {iii }}$ | 52.64 (11) |
| O8-Eu1-O1 | 74.16 (11) | O7ii-Eu1-O5 ${ }^{\text {iii }}$ | 134.30 (11) |
| $\mathrm{O} 4{ }^{\text {i }}$-Eu1-O2 $2^{\text {ii }}$ | 139.60 (12) | O4i-Eu1-O9 | 75.11 (11) |
| O8-Eu1-O2ii | 73.82 (11) | O8-Eu1-O9 | 137.46 (11) |
| O1-Eu1-O2 ${ }^{\text {ii }}$ | 136.40 (11) | O1-Eu1-O9 | 148.33 (11) |
| O4-Eu1-O6 $6^{\text {iii }}$ | 77.24 (14) | O2ii-Eul-O9 | 68.36 (11) |
| O8-Eu1-O6 ${ }^{\text {iii }}$ | 83.30 (13) |  | 105.18 (13) |
| O1-Eu1-O6 $6^{\text {iii }}$ | 75.66 (12) | O7ii-Eu1-O9 | 65.49 (12) |
| $\mathrm{O} 2^{\text {ii- }}$ - $\mathrm{Eu} 1-\mathrm{O} 6{ }^{\text {iii }}$ | 128.22 (11) | O5iii-Eu1-09 | 70.53 (12) |
| O4 $4^{\text {i }}$ Eu1-O7ii | 75.42 (13) | O4i-Eu1-O8ii | 106.37 (12) |
| O8-Eul-O7ii | 121.59 (11) | O8-Eul-O88 ${ }^{\text {ii }}$ | 73.63 (12) |
| O1-Eu1-O7ii | 98.83 (11) | O1-Eu1-O88ii | 69.89 (10) |
| O2ii-Eu1-O7ii | 74.22 (11) | O2ii-Eu1-O8 ${ }^{\text {ii }}$ | 73.22 (10) |
| O6iii-Eu1-O7 ${ }^{\text {ii }}$ | 152.57 (12) | O6 ${ }^{\text {iii- }}$ - $\mathrm{Eu} 1-\mathrm{O} 8^{\text {ii }}$ | 142.51 (12) |
| O4-Eu1-O5iii | 105.05 (13) | O7ii-Eul-O8 ${ }^{\text {ii }}$ | 50.83 (10) |
| O8-Eu1-O5iii | 83.87 (12) | O5iii-Eul-O8 ${ }^{\text {ii }}$ | 147.92 (11) |
| O1-Eu1-O5 ${ }^{\text {iii }}$ | 125.79 (11) | O9-Eu1-O8 ${ }^{\text {ii }}$ | 111.84 (11) |

Symmetry codes: (i) 1/2-x, 1/2+y, -1/2-z; (ii) 1/2-x, 1/2-y, -z; (iii) 1-x, -y, -z.

| Bond | Dist. | Bond | Dist. |
| :---: | :---: | :---: | :---: |
| $\mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {i }}$ | 2.326 (2) | Tb1-O7 ${ }^{\text {ii }}$ | 2.457 (2) |
| Tb1-O8 | 2.354 (2) | Tb1-O5 ${ }^{\text {iii }}$ | 2.4763 (11) |
| Tb1-O1 | 2.354 (2) | Tb1-O9 | 2.5465 (11) |
| $\mathrm{Tb} 1-\mathrm{O} 2^{\text {ii }}$ | 2.392 (2) | $\mathrm{Tb} 1-\mathrm{O} 8^{\text {ii }}$ | 2.613 (2) |
| $\mathrm{Tb} 1-\mathrm{O} 6^{\text {iii }}$ | 2.4149 (10) |  |  |
| Angle | $\left({ }^{\circ}\right.$ ) | Angle | $\left({ }^{\circ}\right.$ ) |
| O4- ${ }^{\text {i }}$ - $1-\mathrm{O} 8$ | 145.69 (8) | O8-Tb1-O5iii | 83.75 (6) |
| O4i-Tbl-O1 | 73.74 (8) | $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 5^{\text {iii }}$ | 125.68 (6) |
| O8-Tbl-O1 | 74.32 (7) | $\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 5^{\text {iii }}$ | 78.56 (6) |
| $\mathrm{O} 4-\mathrm{Tb} 1-\mathrm{O} 2^{\mathrm{ii}}$ | 139.69 (8) | $\mathrm{O} 6^{\text {iii }}$ - $\mathrm{Tb} 1-\mathrm{O} 5^{\text {iii }}$ | 53.1 |
| $\mathrm{O} 8-\mathrm{Tb} 1-\mathrm{O} 2{ }^{\text {ii }}$ | 74.19 (7) | $\mathrm{O} 7{ }^{\text {iii- }} \mathrm{Tb} 1-\mathrm{O} 5^{\text {iii }}$ | 134.85 (6) |
| $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 2{ }^{\text {ii }}$ | 137.02 (7) | $\mathrm{O} 4{ }^{\text {i }}$-Tb1-O9 | 75.43 (6) |
| $\mathrm{O} 4{ }^{\text {i }}$-Tb1-O6 $6^{\text {iii }}$ | 76.83 (7) | O8-Tb1-O9 | 137.47 (6) |


| O8-Tb1-O6 $6^{\text {iii }}$ | 83.15 (6) | $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 9$ | 148.18 (6) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 6^{\text {iii }}$ | 75.05 (6) | O2 $2^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 9$ | 68.08 (6) |
| $\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 6^{\text {iii }}$ | 128.51 (6) | O6 $6^{\text {iii- }} \mathrm{Tb} 1-\mathrm{O} 9$ | 105.34 (3) |
| $\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Tb} 1-\mathrm{O} 7^{\text {ii }}$ | 75.18 (9) | O7ii-Tb1-09 | 66.05 (6) |
| O8-Tbl-O7 ${ }^{\text {ii }}$ | 121.85 (7) | O5iii-Tb1-09 | 70.41 (4) |
| $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 7{ }^{\text {ii }}$ | 98.28 (8) | $\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Tb} 1-\mathrm{O} 8^{\text {ii }}$ | 106.89 (8) |
| $\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 7^{7 i}$ | 74.83 (7) | $\mathrm{O} 8-\mathrm{Tb} 1-\mathrm{O} 8{ }^{\text {ii }}$ | 73.31 (8) |
| $\mathrm{O} 6^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 7^{\text {ii }}$ | 151.98 (6) | $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 8^{\text {ii }}$ | 70.29 (7) |
| $\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Tb} 1-\mathrm{O} 5^{\text {iii }}$ | 105.13 (7) | $\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O}^{\text {ii }}$ | 73.14 (7) |
| O4i-Tbl-O8 | 145.69 (8) | O6 $6^{\text {iii }}$-Tbl-O8 ${ }^{\text {ii }}$ | 142.12 (5) |
| O4i-Tbl-O1 | 73.74 (8) | $\mathrm{O} 7^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 8^{\text {ii }}$ | 51.04 (7) |

Symmetry codes: (i) $3 / 2-x, 1 / 2+y, 1 / 2-z$; (ii) $3 / 2-x, 1 / 2-y, 1-z$; (iii) $2-x,-y, 1-z$.

