Supplementary Information

Efficient one-step synthesis of p-type copper oxide for lowtemperature, solution-processed thin-film transistors

Ao Liu,^{a,b,c} Shengbin Nie,^{a,b,c} Guoxia Liu,^{a,b,c} * Huihui Zhu,^c Chundan Zhu,^{a,b,c} Byoungchul Shin,^d Elvira Fortunato,^e Rodrigo Martins,^e and Fukai Shan^{a,b,c*}

^aCollege of Physics, Qingdao University, Qingdao 266071, China ^bCollege of Electronic & Information Engineering, Qingdao University, Qingdao 266071, China

^cLab of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China ^dElectronic Ceramics Center, DongEui University, Busan 614-714, Korea ^eDepartment of Materials Science/CENIMAT-I3N, Faculty of Sciences and Technology, New University of Lisbon and CEMOP-UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal

Corresponding Author

* To whom correspondence should be addressed.

E-mail: gxliu@qdu.edu.cn; fukaishan@yahoo.com

^{*} Corresponding author: gxliu@qdu.edu.cn; fukaishan@yahoo.com

Fabrication of Al₂O₃ dielectric films and devices. The Al₂O₃ precursor solution with a concentration of 0.2 M was prepared by dissolving Al(NO₃)₃.9H₂O in DI water. The precursor solution was spun on the Si substrate at 5000 rpm for 20 s and annealed at 350 °C for 1 h in air. The coating process was repeated twice to achieve an appropriate thickness (30 nm). After that, the CuI precursor solution was spun on the Al₂O₃/p⁺-Si substrate. The laminated thin films were then annealed at 250 °C for 1 h. Finally, Ni source and drain electrodes were deposited by thermal evaporation using the same shadow mask.

The analysis equipments for Al_2O_3 and Cu_xO thin films and TFTs. The thicknesses of CuI, Cu₂O, and CuO thin films were measured using ellipsometry (ESS01, Sofn Instrument). The crystal structures of Cu_xO thin films were investigated by X-ray diffractometer (XRD, X'Pert-PRO MPD and MRD, PANalytical, Holland) with a CuKa1 radiation. The surface morphologies of Cu_xO thin films were measured by using an atomic force microscope (AFM, SPA-400, Seiko). The chemical compositions of Cu_xO thin films were analyzed by X-ray photoelectron spectroscopy (XPS, ESCALAB 250). The electrical properties of Al_2O_3 capacitor and TFTs were investigated by using a semiconductor parameter analyzer (Keithley 2634B) in a dark box.

The calculation details of device parameters. The on/off current ratio (I_{on}/I_{off}) is defined as the ratio of drain current in the on state (I_{on}) to the drain current in the off state (I_{off}) . The threshold voltage (V_{th}) is determined from linear fits to the dependence of the $I_D^{1/2}$ on V_G . The subthreshold swing (SS) value is defined as the V_{DS} required to increase the I_{DS} by one decade.

Fig. S1 XPS spectrum of as-prepared Cu₂O thin film.

Fig. S2 (a) Areal capacitance of an $Al/Al_2O_3/p^+$ -Si capacitor as a function of frequency. The leakage-current density versus electric field is shown in the inset. (b) Transfer curves of CuO-250/Al_2O_3 TFTs.