Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplemental Information

Solution-Phase Growth Mechanism of Phosphorus-Doped MnAs Nanoparticles: Size, Polydispersity and Dopant Control on the Nanoscale

Roshini Pimmachcharige,^a Yanhua Zhang,^a Rajesh Regmi.^b Gavin Lawes.^b Stephanie L. Brock^a* ^aDepartment of Chemistry, Wayne State University, Detroit, MI 48202, United States ^bDepartment of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

Fig. S1. TEM images and size distribution histograms of synthesized MnAs nanoparticles prepared according to a published procedure¹ (1 mmol Mn and As atomic concentrations, 5 g of TOPO and 10 mL of octadecene) but varying the reaction time: (a) 10 h (b) 5 h (c) 2 h (d) 1 h (the scale bar is 20 nm).

References.

1. Y. Zhang, R. Regmi, Y. Liu, G. Lawes and S. L. Brock, ACS Nano, 2014, 8, 6814-6821.

Fig. S2. The XRD patterns of synthesized MnAs nanocrystals prepared according to published methods¹ (1 mmol Mn and As atomic concentrations, 5 g of TOPO and 10 mL of octadecene) but varying the reaction time: (a) 10 h (b) 5 h (c) 2 h (d) 1 h. The drop lines indicate the reference spectrum of the β -MnAs (PDF# 71-0923). The crystallite size achieved by application of the Scherrer equation is indicated.

Fig. S3. Comparison of the temperature dependent magnetic susceptibility (magnetic susceptibility per mole of Mn) for (a) type-B MnAs nanocrystals (from 12 to 32 nm) and (b) type-A MnAs nanoparticles (22 nm). The temperature dependent magnetic susceptibility of 21 nm type-B MnAs nanocrystals adopting the β structure was previously reported.¹ The presence of two transitions in the 18 nm samples may reflect a small degree of type-A impurity (with a higher T_C).