Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

Perovskite hybrid solar cells with the fullerene derivative electron extraction layer

Wenzhan Xu,^{a,b} Xiang Yao,^b Tianyu Meng,^a Kai Wang,^a Fei Huang,^b Xiong Gong^{a,b,*} and Yong Cao^b
^a Department of Polymer Engineering, College of Polymer Science and Polymer Engineering, The University of Akron, OH 44325, United States
^b Institute of Polymeric Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China

*Corresponding author, E-mails: xgong@uakron.edu, Fax: (330) 9723046

List of Figures

- Fig.S1 Histograms of photovoltaic parameters for pero-HSCs $W/PC_{61}BM$ EEL and pero-HSCs $W/PC_{61}BM$ -Py EEL: a) PCE, b) V_{OC} , c) J_{SC} , and d)FF
- **Fig.S2** AFM tapping-mode height images and corresponding phase images of (a and d) CH₃NH₃PbI₃, (b and e) CH₃NH₃PbI₃/PC₆₁BM and (c and f) CH₃NH₃PbI₃/PC₆₁BM-Py thin films
- Fig. S3 Top-view scanning electron microscopy images of $PC_{61}BM$ on top of perovskite films
- Fig. S4 The J-V curve of electron-only devices under illumination
- Fig. S5 Light intensity dependence of J_{SC}

Fig. S6 XRD pattern of ITO/PEDOT:PSS/ CH₃NH₃PbI₃/PC₆₁BM and PC₆₁BM-Py EEL

Fig. S1 Histograms of photovoltaic parameters for pero-HSCs $W/PC_{61}BM$ EEL and pero-HSCs $W/PC_{61}BM$ -Py EEL: a) PCE, b)V_{oc}, c)J_{sc}, and d)FF

According to the results showed in Fig. S1, it is concluded that the photovoltaic parameters of the pero-HSCs incorporated with the $PC_{61}BM$ -Py EEL have a smaller standard deviation in comparison to those of the pero-HSCs incorporated with the pristine $PC_{61}BM$ EEL.

Fig. S2 AFM tapping-mode height images and corresponding phase images of (a and d) CH₃NH₃PbI₃, (b and e) CH₃NH₃PbI₃/PC₆₁BM and (c and f) CH₃NH₃PbI₃/PC₆₁BM-Py thin films.

According to the height image, the AFM images showed that the root-mean-square (RMS) value of $PC_{61}BM$ layer was reduced, indicating the surface of $PC_{61}BM$ becomes smoother. The RMS of $CH_3NH_3PbI_3$ films is 13.03 nm. However, after $PC_{61}BM$ coated on the top of $CH_3NH_3PbI_3$ films, the RMS of the $CH_3NH_3PbI_3/PC_{61}BM$ thin film is significantly decreased to 2.95 nm. And the RMS of the $CH_3NH_3PbI_3/PC_{61}BM$ -Py thin film is reduced to 2.71 nm. The smooth surface of the $CH_3NH_3PbI_3/PC_{61}BM$ -Py layer would facilitate the electron being transported from the $CH_3NH_3PbI_3/PC_{61}BM$ -Py layer to BCP layer and being collected by Ag electrode, resulting in high J_{SC} and large FF, thus high PCEs

Fig. S3 Top-view scanning electron microscopy images of $PC_{61}BM$ on top of perovskite films.

Fig. S3 presents the top SEM images of the $CH_3NH_3PbI_3/PC_{61}BM$ layer and the $CH_3NH_3PbI_3/PC_{61}BM$ -Py layer. Reduced aggregation of $PC_{61}BM$ molecules is observed from the $CH_3NH_3PbI_3/PC_{61}BM$ -Py layer, which indicates the molecular packing of $PC_{61}BM$ is more condense.

Fig. S4 The J-V curve of electron-only devices under illumination.

It is found that the $PC_{61}BM$ -Py EEL possesses more than 2-fold enhanced current densities as compared with those of the $PC_{61}BM$ EEL at the same applied voltage, which illustrates that improved charge transporting properties of the $PC_{61}BM$ -Py EEL

Fig. S5 light intensity dependence of J_{SC}

According to the power-law: Jsc \propto I^{α}, with α = 0.94 and α = 0.98 are observed from the

pero-HSCs with $PC_{61}BM$ EEL and the pero-HSCs with $PC_{61}BM$ -Py EEL, respectively. Based on the device physics of solar cells, a large α indicates that there is less bimolecular recombination in cells. Thus, we conclude that the $PC_{61}BM$ -Py EEL can reduce the bimolecular recombination in the pero-HSCs.

The XRD patterns have showed that the intensity of the peak, corresponding to $PC_{61}BM$ is

increased for the $PC_{61}BM$ -Py thin film, as compared with that for pristine $PC_{61}BM$ layer. The enhanced peak intensity indicates that a high crystallinity is formed in the $PC_{61}BM$ -Py thin film.