Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

SUPPORTING INFORMATION

Insights into Li⁺-induced morphology evolution and upconversion

luminescence enhancement of KSc₂F₇:Yb/Er nanocrystals

Yangbo Wang,^a Tian Wei,^a Xingwen Cheng,^a Yue Pan,^b Hui Ma,^a Juan Xie,^c Haiquan Su,^b Xiaoji Xie,^{*a} Ling Huang^{*a} and Wei Huang^{*ac}

^aKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China. E-mail: iamxjxie@njtech.edu.cn, iamlhuang@njtech.edu.cn, iamwhuang@njtech.edu.cn

^bSchool of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, P. R. China

^cKey Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.

Fig. S1 (a) HRTEM image and (b) XRD of the as-synthesized KSc₂F₇:Yb/Er nanocrystals. The diffraction pattern at the bottom is the literature reference of orthorhombic KSc₂F₇ crystal (JCPDS: 39-0784). (c) The energy-dispersive X-ray spectrum of the as-synthesized KSc₂F₇:Yb/Er nanocrystals, proving the presence of K, Sc, F, Yb and Er.

Fig. S2 The (a) length and (b) diameter distributions of KSc_2F_7 :Yb/Er nanocrystals doped with varied amounts of Li⁺ (0-70 mol%). L and D represent length and diameter, respectively.

Fig. S3 (a) XRD pattern of KSc₂F₇:Yb/Er nanocrystals doped with 80 mol% Li⁺. The diffraction pattern at the bottom is the literature reference of cubic ScF₃ crystal (JCPDS: 46-1243).

Fig. S4 XRD patterns of KSc_2F_7 : Yb/Er nanocrystals doped with varied amounts of Li⁺ (0-70 mol%). The diffraction pattern at the bottom is the literature reference of orthorhombic KSc_2F_7 crystal (JCPDS: 39-0784).

Fig. S5 The amount of Li^+ detected in the KSc₂F₇ nanocrystals and the (a) length, (b) diameter, and (c) aspect ratio of the corresponding nanocrystals as a function of Li^+ doping concentration.

Fig. S6 (a) Relative enhancement of upconversion emission as a function of Li^+ doping concentration. The emission intensity of KSc₂F₇ nanocrystals without Li^+ doping was set as 1. (b) Red to green emission intensity ratio as a function of Li^+ doping concentration.

Fig. S7 Photoluminescence spectra of (a) KSc_2F_7 :Yb/Tm (20/0.5 mol%) and (b) KSc_2F_7 :Yb/Ho (20/2 mol%) nanocrystals without and with 60 mol% Li⁺ doping under the excitation of a 980 nm laser.

Fig. S8 Proposed upconversion mechanism under 980 nm laser excitation in KSc₂F₇:Yb/Er nanocrystals. The dash, dotted, dash-dotted and full arrows represent energy transfer, multiphonon relaxation, excitation, and emission process, respectively.

Li ⁺ doped (mol%)	$\tau_{\rm eff}$ (µs)
0	56.7
10	87.0
30	161.6
50	260.8
60	462.5
70	315.1

Table S1 Luminescent lifetime of ⁴F_{9/2} state of Er³⁺ ions in KSc₂F₇:Yb/Er nanocrystals

The effective luminescent lifetime (τ_{eff}) was calculated by:

$$\tau_{eff} = \frac{1}{I_0} \int_0^\infty I(t) dt$$

where I_0 is the maximum intensity, and I(t) is the luminescent intensity as a function of time t.