Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

New WOLEDs based on π -extended azatrioxa[8]circulenes

K. B. Ivaniuk,^a G. V. Baryshnikov^{b,c,*}, P. Y. Stakhiraa, , S. K. Pedersen,^d M. Pittelkow^d, A. Lazauskas,^e D. Volyniuk,^e J. V. Grazulevicius,^e B. F. Minaev^{b,c}

and H. Ågren^b

^aLviv Polytechnic National University, S. Bandera 12, 79013 Lviv, Ukraine.
^bDivision of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
^cDepartment of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, Shevchenko 81, 18031 Cherkassy, Ukraine
^dDepartment of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
^eInstitute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT51423 Kaunas, Lithuania

Electronic Supplementary Information

List of Content

Figure S1. Structures for the exciplex-forming m-MTDATA and electron-	p.3
transporting TPBi materials.	
Figure S2. Layer-by-layer scheme of the fabricated devices.	p.3
Figure S3. Energy diagram for the devices C and D	p.3
Table S1. Selected electronic transitions for the AOC 1 calculated by the	p.4
parameterized B3LYP/6-31G(d) method ($a_X^{HF}=0.14$, $a_X^{Slater}=0.86$) using the	
PCM model (solvent – dichloromethane).	
Table S2. Selected electronic transitions for the AOC 2 calculated by the	p.4
parameterized B3LYP/6-31G(d) method ($a_X^{HF}=0.14$, $a_X^{Slater}=0.86$) using	
PCM model (solvent – dichloromethane).	

Figure S4 . Shapes of frontier molecular orbitals of AOC 1 calculated by the	p.5			
parameterized B3LYP/6-31G(d) method	•			
$(a_X^{HF}=0.14, a_X^{Slater}=0.86)$				
Figure S5. Shapes of frontier molecular orbitals of AOC 2 calculated by the	p.6			
parameterized B3LYP/6-31G(d) method				
$(a_X^{HF}=0.14, a_X^{Slater}=0.86)$				
Figure S6. X-ray data for crystal packing of AOC 1 (side and top view)	p.7			
Figure S7. Current density and brightness vs. voltage (a), current and power	p.8			
efficiency vs. current density (b), external quantum efficiency vs. current				
density (c) characteristics of the device A.				
Figure S8. Current density and brightness vs. voltage (a), current and power	p. 9			
efficiency vs. current density (b), external quantum efficiency vs. current				
density (c) characteristics of the device B .				
Figure S9. Photos of devices C (left) and D (right) at 10 V.	p. 10			
Tables S3, S4. Cartesian coordinates for the compounds 1 and 2 optimized	p.11-			
by the DFT/B3LYP/6-31G(d) method.				

m-MTDATA

TPBi

Figure S1. Structures for the exciplex-forming m-MTDATA and electron-transporting TPBi materials.

Al		
Ca		
TPBi		
circulene(1 or 2)		5 -
m-MTDATA	{	+ ۲
CuI		
ITO		
Glass		

Figure S2. Layer-by-layer scheme of the fabricated devices.

Figure S3. Energy diagram for the devices C and D

Table S1. Selected electronic transitions for AOC **1** calculated by the parameterized B3LYP/6-31G(d) method ($a_x^{HF}=0.14$, $a_x^{Slater}=0.86$) using the PCM model (solvent – dichloromethane).

State	$\lambda_{\text{theor, }}$ nm	$\lambda_{exp.}$ nm	F	Assignment
\mathbf{S}_1	405*	406	0.265	HOMO \rightarrow LUMO (+91%)
		386 (0-1)		
		369 (0-2)		
S_2	403*		0.277	HOMO-1 \rightarrow LUMO (+88%)
S ₉	327	325	0.287	HOMO-4 \rightarrow LUMO (+50%)
				HOMO-2 \rightarrow LUMO+1 (+42%)
S ₁₂	304	298	0.253	HOMO-2 \rightarrow LUMO+2 (+54%)
				HOMO-3 \rightarrow LUMO+1 (+31%)
S ₁₃	301		0.366	HOMO-3 \rightarrow LUMO+2 (+66%)
				HOMO-4 \rightarrow LUMO+1 (16%)
				HOMO-2 \rightarrow LUMO+1 (12%)

* Singlet excited states S1 and S2 are strictly degenerate for the symmetrical (C_{2v}) model of compound 1 without side substituents. This is due to the fact that frontier HOMO and HOMO-1 orbitals are strictly degenerate within the C_{2v} symmetry point group. In the case of substituted AOC 1 these orbitals are quasidegenerate and therefore S1 and S2 electronic states are slightly split (only by 2 nm) with the different oscillator strength values. The same conclusion is also valid for the S₁₂ and S₁₃ states.

Table S2. Selected electronic transitions for the AOC **2** calculated by the parameterized B3LYP/6-31G(d) method ($a_x^{HF}=0.14$, $a_x^{Slater}=0.86$) using PCM model (solvent – dichloromethane).

State	$\lambda_{\text{theor, }}$ nm	$\lambda_{exp.}$ nm	f	Assignment
\mathbf{S}_1	409*	404,	0.298	$HOMO \rightarrow LUMO (96\%)$
		382 (0-1)		
		366 (0-2)		
S ₂	403*		0.332	HOMO-1 \rightarrow LUMO (92%)
S ₉	331	325	0.304	HOMO-2 \rightarrow LUMO+1 (48%)
				HOMO-4 \rightarrow LUMO+0 (42%)
S ₁₂	309	299	0.415	HOMO-3 \rightarrow LUMO+2 (52%)
				HOMO-2 \rightarrow LUMO+2 (15%)
S ₁₃	308		0.347	HOMO-2 \rightarrow LUMO+2 (44%)
				HOMO-3 \rightarrow LUMO+1 (19%)
				HOMO-3 \rightarrow LUMO+2 (18%)

* See footnotes below Table S1.

Figure S4. Shapes of frontier molecular orbitals of AOC 1 calculated by the parameterized B3LYP/6-31G(d) method ($a_X^{HF}=0.14$, $a_X^{Slater}=0.86$)

Figure S5. Shapes of frontier molecular orbitals of AOC 2 calculated by the parameterized B3LYP/6-31G(d) method ($a_X^{HF}=0.14$, $a_X^{Slater}=0.86$)

Figure S6. X-ray data for crystal packing of AOC 1 (side and top view)

Figure S7. Current density and brightness vs. voltage (a), current and power efficiency vs. current density (b), external quantum efficiency vs. current density (c) characteristics of the device **A**.

Figure S8. Current density and brightness *vs.* voltage (a), current and power efficiency *vs.* current density (b), current efficiency *vs.* quantum density (c) characteristics of the device **B**.

Figure S9. Photos of devices C (left) and D (right) at 10 V.

Table S3. Cartesian coordinates for the compound 1 optimized by theDFT/B3LYP/6-31G(d) method.

_			
7	-0.280246000	-3.509765000	-0.520357000
8	3.901581000	0.001219000	-0.049206000
8	0.375638000	4.168869000	0.057043000
8	-3.810080000	0.659920000	-0.059333000
6	3.305102000	-2.412733000	-0.180653000
6	0.609060000	-1.427748000	-0.338132000
6	3.698621000	2.461577000	0.021026000
6	1.398930000	3.241233000	-0.015705000
6	-2.872589000	1.672743000	-0.043610000
6	-0.520277000	2.075915000	-0.093302000
6	-3.193319000	3.054575000	0.028104000
6	-1.721062000	-0.247938000	-0.246157000
6	3.149681000	1.158705000	-0.057337000
6	-2.094100000	3.973736000	0.047059000
6	2.777283000	3.560767000	0.025304000
6	-0.808098000	-1.305191000	-0.356519000
6	1.807361000	0.884212000	-0.145640000
6	1.683820000	-0.538132000	-0.227766000
6	-0 789896000	3 424032000	0.008063000
6	-1 596635000	1 170440000	-0 133693000
6	0 901039000	1 960578000	-0 110190000
6	0.910958000	-2 796086000	-0 423311000
6	-3 079852000	-0 524069000	-0 193083000
6	-2 714884000	-2 855089000	-0 385858000
1	-3 030153000	-3 748380000	-0.453985000
6	-1 332489000	-2 605390000	-0.452343000
6	-3.630761000	-1 820/16000	-0.222528000
6	5.074607000	2 720135000	0.100/12000
1	5.602481000	2.729133000	0.109412000
1	<i>J.093</i> 481000	2.007819000	0.120009000
1	4.03/104000	5.098552000	0.100481000
1	4.900013000	3.988003000	0.200048000
0	2.223133000	-3.280008000	-0.340331000
I C	2.379004000	-4.214108000	-0.408388000
0	2.979063000	-1.042310000	-0.103491000
0	-0.3648/0000	-4.93882/000	-0./89125000
1	0.353902000	-5.185249000	-1.423023000
l	-1.2301/8000	-5.128/91000	-1.230184000
6	4./20160000	-2.902169000	0.0944/8000
6	-5.110384000	-2.083960000	0.061135000
6	5.535917000	4.021614000	0.181725000
l	6.469323000	4.18///1000	0.242109000
6	-4.726439000	4.916301000	0.119317000
1	-5.616401000	5.247945000	0.139043000
6	-5.352932000	-1.746120000	1.544976000
1	-6.295351000	-1.901088000	1.765388000
1	-5.130849000	-0.805685000	1.706218000
1	-4.787747000	-2.316858000	2.107001000
6	3.286868000	4.874865000	0.095790000
1	2.688264000	5.611927000	0.094768000

6	4.833556000	-4.421812000	-0.054897000
1	5.756529000	-4.700157000	0.124222000
1	4.586508000	-4.680285000	-0.966919000
1	4.230435000	-4.858074000	0.582234000
6	-2.359853000	5.356227000	0.099653000
1	-1.638694000	5.974389000	0.113455000
6	-4.506486000	3.561702000	0.079914000
1	-5.243470000	2.962993000	0.087177000
6	-3.650459000	5.814734000	0.130759000
1	-3.818190000	6.750463000	0.160040000
6	5.731661000	-2.251291000	-0.854055000
1	6.629935000	-2.586737000	-0.653784000
1	5.712336000	-1.278827000	-0.735228000
1	5.499418000	-2.471088000	-1.780193000
6	5.068964000	-2.534450000	1.550285000
1	5.979159000	-2.836644000	1.753989000
1	4.434782000	-2.969937000	2.158597000
1	5.014956000	-1.561543000	1.663413000
6	-5.478759000	-3.551828000	-0.169501000
1	-6.432555000	-3.681520000	0.016456000
1	-4.947704000	-4.119649000	0.427376000
1	-5.291550000	-3.792410000	-1.101193000
6	-1.409116000	-5.643944000	1.409892000
1	-1.274626000	-6.222282000	2.189106000
1	-2.243090000	-5.891199000	0.959277000
1	-1.460130000	-4.709410000	1.700915000
6	-0.246098000	-5.812006000	0.447968000
1	-0.194328000	-6.760631000	0.168827000
1	0.595075000	-5.590164000	0.919789000
6	-6.021094000	-1.218474000	-0.814813000
1	-6.957821000	-1.416317000	-0.607847000
1	-5.846986000	-1.413217000	-1.759791000
1	-5.840632000	-0.271923000	-0.638268000

Table S4. Cartesian coordinates for the compound 2 optimized by theDFT/B3LYP/6-31G(d) method.

1	0.783504000	-7.006458000	-1.479190000
1	1.002385000	-5.405072000	1.237843000
1	0.172243000	-6.955858000	0.959991000
1	-0.736556000	-5.572351000	1.639592000
1	-3.524910000	5.927225000	-1.624262000
1	-1.861613000	5.332968000	-1.420597000
1	-2.932376000	4.595451000	-2.660220000
1	-1.494504000	-7.190116000	-0.904884000
1	-1.914134000	-5.787933000	-1.922317000
1	-2.434122000	-5.846002000	-0.200959000
1	-2.569821000	-3.836836000	-0.828332000
1	-4.264065000	1.411404000	-0.902545000
1	-4.986716000	3.291177000	-1.921453000
1	-5.311217000	3.069499000	-0.165005000
1	-5.438105000	4.687790000	-0.906596000
6	-2.892522000	5.028919000	-1.650786000
6	-3.311280000	4.637885000	0.782691000
6	-4.878354000	3.744008000	-0.922631000
6	-3.404095000	4.023826000	-0.617438000
6	0.051197000	-5.864412000	0.930189000
6	0.775374000	-5.907737000	-1.457802000
6	-0.313344000	-5.428196000	-0.492806000
6	-1 625666000	-6 099781000	-0 905663000
6	-0 430833000	-3 918269000	-0 521146000
6	4 745501000	-1 117484000	0 455469000
6	2 578102000	-0.016211000	0.034322000
1	-4 234266000	-2 514207000	-1 216056000
1	-3 397390000	-0.832123000	1 685387000
6	-4 493795000	-0 993372000	1 575799000
1	-4 873632000	-0 677102000	3 682630000
6	-5 316183000	-0.908377000	2 703935000
6	-6 687948000	-1 120492000	2 587552000
6	-7 246721000	-1 396445000	1 340327000
6	-6 430444000	-1 464817000	0.210395000
6	-5 049197000	-1 279396000	0.327511000
1	-6 885608000	-1 673667000	-0 782234000
1	-8 327851000	-1 562718000	1 248199000
1	-7 330458000	-1.068328000	3 486285000
6	-1 230572000	-1.000320000	_0.928/153000
1	-4.230372000	-0.8397/2000	-0.720435000
7	-7 837064000	-1.015379000	-0.840891000
6	-1 70802000	-1 861262000	-0 674978000
6	-0.571374000	-1.001202000 -1.037701000	-0.531242000
6	-0.371374000 -1.011117000	0.319186000	-0.531242000
6	-1.011117000	0.317100000	-0.379410000 -0.740375000
6	-2.707700000	1 40566000	-0.740375000
6	-3.1000/1000	2 751175000	-0.788507000
6	_1 101072000	2.751175000	-0.505605000
6	-1.191023000	2.740312000	-0.303033000
U	-0.415251000	1.550071000	-0.400073000

6	0.932321000	1.974984000	-0.227071000
6	0.898155000	3.371302000	-0.125961000
8	-0.397529000	3.868396000	-0.316010000
6	2.041882000	4.155821000	0.138578000
6	3.279645000	3.513772000	0.283671000
6	3.298262000	2.108010000	0.216167000
6	2.147624000	1.339460000	-0.035929000
6	3.947421000	0.022637000	0.334604000
8	4.428828000	1.327079000	0.421457000
6	4.145685000	-2.389361000	0.339668000
6	2.750941000	-2.405336000	0.089966000
6	1.970091000	-1.253436000	-0.090718000
8	1.983516000	-3.552826000	-0.073891000
6	0.691629000	-3.093645000	-0.332550000
6	0.635744000	-1.681258000	-0.351917000
6	-1.649504000	-3.258348000	-0.689965000
6	1.969944000	5.574237000	0.224429000
6	4.983139000	-3.531758000	0.337017000
6	6.141968000	-0.952550000	0.533883000
6	6.357309000	-3.347832000	0.366645000
6	6.931028000	-2.070291000	0.453535000
6	4.462498000	4.278396000	0.442636000
6	3.137920000	6.290516000	0.367969000
6	4.397649000	5.644941000	0.453789000
1	0.969864000	6.000935000	0.253396000
1	3.077951000	7.386113000	0.366312000
1	5.351728000	6.126765000	0.546138000
1	5.459529000	3.813282000	0.423736000
1	6.588066000	0.049846000	0.570694000
1	8.010013000	-1.942149000	0.452787000
1	7.086405000	-4.157912000	0.312756000
1	4.571962000	-4.549928000	0.262302000
1	-3.908239000	5.559885000	0.812095000
1	-3.701894000	3.939225000	1.537248000
1	-2.268683000	4.890761000	1.023577000
1	0.584504000	-5.532077000	-2.472804000
1	1.766799000	-5.571785000	-1.120899000