Supporting Information

A comparative study on carbazole-based thermally activated delayed fluorescence emitters with different steric hindrance

Kai Wang, Cai-Jun Zheng,* Wei Liu, Yi-Zhong Shi, Ke Liang, Ming Zhang, Xue-Mei Ou and Xiao-Hong Zhang*

Figure S1. Cyclic voltammetry of ferrocence, CZ-TTR and DCZ-TTR in acetonitrile and dichloromethane.

Figure S2. TGA (left) and DSC (right) thermograms of CZ-TTR and DCZ-TTR.

Figure S3. Transient PL decay curves for delayed emission of a) 10 wt% CZ-TTR and b) 6.5 wt% DCZ-TTR doped mCP film. (Excitation wavelength was 300 nm)

Figure S4. The device optimizations for (a) CZ-TTR and (b) DCZ-TTR.

Table S1. EL performances of the devices based on CZ-TTR and DCZ-TTR.

Device	V _{on} ^[a] (V)	EQE _{max} (%)	CE _{max} (cd/A)	PE _{max} (lm/W)	λ _{max} (nm)	FWHM (nm)	CIE (x, y)
CZ-TTR	3.1	14.4	32.5	32.9	492	101	(0.21,0.35)
DCZ-TTR	3.2	20.1	59.6	58.5	512	92	(0.25.0.50)

[a] Turn on voltage obtained at 1 cd/m^2 .

Emitter	$ au_{p}^{[a]}$ [ns]	τ _d [b] [μs]	Ф _F [%]	Ф _{таdf} [%]	k _p [s ⁻¹]	k _d [s ⁻¹]	k ^S [s ⁻¹]	kisc [s ⁻¹]	krisc [s ⁻¹]	k _{nr} [s ⁻¹]
CZ-TTR	69.6	28.1	29.4 ^[c]	27.3 ^[c]	1.4×10 ⁷	3.6×104	4.2×10 ⁶	1.0×10 ⁷	4.7×10 ⁴	2.19×10 ⁴
			48.8 ^[d]	45.4 ^[d]			7.0×10 ⁶	7.4×10 ⁶	6.5×10 ⁴	4.0×10 ³
DCZ-TTR	31.7	25.8	5.7 ^[c]	41.5 ^[c]	3.2×10 ⁷	3.9×10 ⁴	1.8×10 ⁶	3.0×10 ⁷	3.0×10 ⁵	2.17×10 ⁴
			12.0 ^[d]	88.0 ^[d]			3.8×10 ⁶	2.8×10 ⁷	3.2×10 ⁵	0

Table S2. Kinetic parameters of CZ-TTR and DCZ-TTR.

[a]Calculated using single-exponential decay fitting for prompt components in the range of 200 ns; [b] Calculated using triple-exponential decay fitting for delayed components in the range of 800 μ s; [c] Estimated from the PLQY value in air; [d] Estimated from the device EQE assuming a light out-coupling efficiency of about 20%.