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This PDF file includes: 

1. Experimental videos.

Video-1# Real-time negative resistance response; Video-2# Real-time positive 

resistance response; Video-3# Real-time humidity insensitive performance; of rGO 

film to human-index finger/human breath.

Video-4# Application to gesture recognition.

Video-5# Application to 3-dimensional-noncontact sensing technique.

2. Further characterization of experimental samples, electrical impedance spectroscopy 

(EIS), and test instrument/method from S1, and Figure S1 to S7.
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Figure S1. Characterization of rGO ink and rGO based films. a) TEM image of rGO 

nanoplates; Inset is the typical rGO ink with the concentration of 0.1 mg/ml. b) Optical 

transmittance of the prepared rGO-based transparent conductive films on a PET substrate with 

the thermal-reduction time of 0 h, 4 h, 12 h, 18 h, respectively; Note that pure PET was used 

as a reference, and rGO (4h, 0.95 mg/ml) was also compared; Insets are the typical rGO films 

with different thermal-reduction times. c) Relationship between sheet resistance and 

concentration of rGO ink to balance the relative resistance for the fabrication of the following 

flexible logic devices. Note the balance point is that the resistance of rGO film (4 h, 0.95 

mg/ml) is equal to that of (18 h, 0.1 mg/ml), and d) demonstrate the typical profiles of both; 

Inset in d) is the corresponding digital image of both rGO films. Note that each sample was 

tested three times and a typical result is presented.
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Figure S2 EDS analysis (element ratio of carbon and oxygen) of rGO films with different 

thermal-reduction times, 4 h, 12 h, 18 h, respectively, at 150 ℃.
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S1. EIS Data Analysis and Equivalent Circuit Modeling

The data obtained from the electrical impedance spectroscopy (EIS) represents the complex 

impedance (Z) along with its phase angle (θ) measured at different frequencies. The variation 

of Z and θ or these impedance parameters such as real and imaginary part of the impedance 

are plotted over frequency to analyze the sample under test. The Nyquist curve which is the 

plot of the imaginary part (X) of the complex impedance over its real part (R) represents the 

key information about the equivalent circuit of the material. The martials with capacitive or 

inductive components parallel to some resistance produces a Nyquist plot which is a part of a 

semicircular arc representing the values of the circuit components within it. In this direction 

Nyquist curve of a particular sample are essentially required to be analyzed to model its 

equivalent circuit for extracting the information of the material composition or structure in 

terms of its equivalent circuit components.

Curve  fitting techniques can be utilized to fit the Nyquist plot with a circular arc and deduce 

the equivalent circuit model. In the present study a Matlab based curve fitting algorithm has 

been developed to analyze the Nyquist plot obtained from the EIS data collected from the 

sample tested using the impedance analyzer Agilent 4980A. The Algorithm loads the 

impedance data matrix formed with real and imaginary part of the sample impedance data 

collected at 20000 different frequency points within a frequency band of 20 Hz to 2 MHz. 

If a material contains the composition which equivalently behaves like a circuit model 

containing a series resistance (r) along with the parallel branch (Rp||Cp) as shown in Figure 

S1-1a, the Nyquist plot exerted by the material will be a semi-circular arc which cuts the real 

axis at a distance of r. The semi-circular impedance spectra will be representing the parallel 

combination of Rp and Cp. When the material contains a constant phase element (CPE), the 

Nyquist plots are found as the semi-circular arcs with their centers some distance below the x-

axis as shown in Figure S1-1b. As shown in the Figure S1-1b, the Nyquist plot presents a 

depressed semi-circular arc which indicates an equivalent circuit containing the CPE in 

parallel with R (R||CPE) and a series resistance (r) is connected with that parallel branch 

(R||CPE). 
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Figure S1-1: EIS data analysis and the equivalent circuit modelling (a) Nyquist plots for a 

circuit combination containing two sub-circuit blocks with a series resistance of r and the 

parallel combination of Rp and a capacitor Cp (Rp||Cp), (b) Nyquist plots of circuit 

combinations containing two sub-circuit blocks: one with series resistance, Rs, and another 

containing a CPE in parallel with resistance Rp (Rp || CPE).

The impedance of the CPE (ZCPE) shown in Figure S1-1b is represented as: 
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where Q is the magnitude of ZCPE and Y0=1/Q, j=√−1 and 0<n<1.

As the phase angle (ϕ) of ZCPE is frequency independent, the phase remains constant 

throughout the frequency range of EIS and hence it is called the constant phase element.

The phase angle (ϕ) of ZCPE is given by:

 n*90                                                              

For an material containing a CPE within it, if n is less than 1, the CPE resembles a real 

capacitor producing a phase angle ϕ less than 90°. As the value of n approaches toward 1, 

CPE gradually becomes more capacitive and Y0 becomes a pure capacitor (CCPE) at n = 1.
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If a material contains CPE and a resistive element, Rp, parallel to each other, the R-X plot 

(Nyquist plot) of the material will be depressed by an angle of (1-n)*90° (Figure S1-1b). 

For example, for a material having an equivalent circuit of a series parallel combination as 

shown below (Figure S1-2), the Matlab base algorithm calculates the fMax, XMax, r, Rp, Xp, Cp, 

n and Zp. 

Figure S1-2: An equivalent circuit model containing two sub-circuit blocks with a series 

resistance of r and the parallel combination of Rp and a capacitor Cp (Rp||Cp)

For the circle parameters calculated by the algorithm the fMax, XMax, r, Rp, Xp and n are found. 

Xp is the capacitive reactance produced by the capacitor Cp as given below:
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The impedance of the parallel branch (Zp = Rp||Cp or Rp||(-jXp)) is represented and calculated 

as:
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Figure S3. Electrical impedance spectroscopies of rGO films with different thermal-reduction 

times under different environmental humilities, a) 20 % RH; b) 60 % RH; c) 80 % RH; d）95 

% RH; respectively. 
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Figure S4. The fitted electrical impedance spectroscopies of rGO films with different 

thermal-reduction times at room humidity (41.3 RH %) from 2 h to 18 h, respectively. This 

image presents the typical fitted results via a MATLAB-based impedance curve fitting 

program, indicating the efficiency of this strategy. Note that the red-dot line is the test results, 

and the blue circle is the fitted results.
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Figure S5. Digital images of the fabricated flexible logic devices. a) and b) rGO-based Janus 
pattern for gesture recognition; c) and d) rGO-based sandwiched pattern for 3D noncontact 
sensing. All scale bar is 1 cm.

Figure S6. SEM images of the flxible logic devices. b) the connection between rGO film (4 h, 
0.95 mg/ml) and rGO film (18 h, 0.1 mg/ml)) with a) and c) different magnifications for Janus 
or sandwich conductive patterns. The scale bar in a) and c) is 1 µm, and that in b) is 50 µm. 
Both films, and their contact line in b) can be seen clearly.
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Figure S7. Digital image for the measurement of electrical impedance spectroscopy (EIS), 

which is composed of a monitoring software, LCR meter, humidity meter, and a climatic 

chamber.
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Figure S8. Relative humidity before and after exercise (measured by an RH reference sensor 

TM325 Dickson) and temperature detected as a function of the distance to the finger. Note 

that changes in temperature were minimal compared to changes in humidity, and thus any 

effect of temperature was neglected in this study. 


