Supporting information

High-quality single-layer nanosheets of MS_2 (M= Mo, Nb, Ta, Ti) directly exfoliated from AMS_2 (A= Li, Na, K) Crystals

Chenguang Guo^{a,b,c}, Hui Li^d, Wei Zhao^{*a}, Jie Pan^{a,b,c}, Tianquan Lin^a, Jijian

Xu^a, Mingwei Chen^{d,e}, Fuqiang Huang*^{a,c}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. *E-mail: huangfq@mail.sic.ac.cn.

^b University of Chinese Academy of Sciences, Beijing 100049, China.

^c State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

^d State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

^e WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

Supplementary Figures

Figure S1. Crystal structure of LiMS₂ (M=Mo, Nb, Ta, Ti)

Figure S2. The ref-Li_xMoS₂ prepared by the n-butyl lithium method

Figure S3. Absorption spectra of the MoS_2 nanosheets colloids prepared by $LiMoS_2$ crystals (a) and ref- Li_xMoS_2 (b) stored for different time; the photograph of colloids produced by the $LiMoS_2$ (c) and ref- $LixMoS_2$ (d) stored for different time.

Figure S4. UV-Vis spectra (a) and corresponding absorption intensities (b) of nanosheets colloids prepared by various concentration of hydrochloric acid for 30 min (mole ratio of H⁺/LiMoS₂ = 0, 0.5, 1, 1.5, 3, 30, respectively; wavelength of 370 nm); UV-Vis spectra (c) and corresponding absorption intensities (d) of colloids exfoliated for different time under condition of H⁺/LiMoS₂=1 (the optimal acid concentration).

In a typical process, 5 mg LiMoS₂ powders were added into 200 ml deionized water with precisely controlled contents of hydrochloric acid. Then, the solution was stirred and sonicated for 30 min for exfoliation. The exfoliation effect of different ratios of $H^+/LiMoS_2$ was investigated. Along with the exfoliation of MoS_2 nanosheets, the color of the dispersion solution became darker, which was characterized by the UV-Vis spectra. As is shown in Figure S2a&c, the amount of hydrogen ion is a very significant

factor in this process, and the optimal concentration is achieved when the mole ratio of hydrogen ions and $LiMoS_2$ is equal to 1:1. Without the addition of hydrogen ions, the $LiMoS_2$ crystals could almost not be exfoliated. This can be explained by the following equations:

$$LiMoS_2 + H^+ \rightarrow (MoS_2)_{monolayers} + Li^+ + H_2\uparrow$$
$$r(H_2) = k[Li_{active}]^x[H^+]^y$$

As we all know, one of the most significant driving force of exfoliation is from the generated hydrogen, which could separate the adjacent layers. Therefore, accelerating the hydrogen evolution reaction rate will boost the exfoliation. On the basis of chemical reaction kinetics, in order to increase the reaction rate, either [Li_{active}] or [H⁺] should be increased. For ref-Li_xMoS₂, though the [H⁺] is very low (10⁻⁷mol/L) in pure water, the [Li_{active}] is large enough to drive the reaction to a high level. Hence the ref-Li_xMoS₂ can be exfoliated in deionized water without any additive agents, which is similar to results in other reports^{1, 2}. However, the [Li_{active}] for LiMoS₂ crystals is very low due to the exceptional stability of the material, so the reaction rate is too slow to boost the exfoliation in pure water. When hydrochloric acid is added, the rate of hydrogen evolution reaction is increased, thus benefiting the exfoliation. However, when the mole ratio of H⁺/LiMoS₂ is more than 1:1, the exfoliation results turn worse. This may be because excessive hydrogen ions cause the agglomeration of the exfoliated edges of LiMoS₂ particles, thus inhibiting further exfoliation of the material.

Sonication time is also an important factor in the exfoliation process. As is shown in Figure 2b&d, the absorption spectra of the dispersion solution is enhanced as the exfoliation time prolongs. When the sonication time reaches 15 minutes, the solution has nearly turned into the darkest color, which means the exfoliation effect has reached the best point. With an excess of exfoliation time, the color of the solution changes little. After sonication, no obvious sediments were found in the dispersion solution. Hence, this acid-assisted method can exfoliate bulk materials into MoS₂ nanosheets in just 15 minutes.

Figure S5. MoS_2 nanosheets prepared by n-butyl lithium method.

Figure S6. S–Mo–S unit layer in LiMoS₂ crystals and 1T' MoS₂.

Figure S7. The temperature-dependence resistance of ref-nanosheets exfoliated in acid solution ($H^+/Li_xMoS_2=1$).

Figure S8. XRD of (a) LiNbS₂; (b) LiTaS₂; (c) LiTiS₂.

Figure S9. SEM of (a) LiNbS₂; (b) LiTaS₂; (c) LiTiS₂.

Figure S10. The structures of $LiNbS_2$, $LiTaS_2$ and $LiTiS_2$ crystals and their single layers.

Figure S11. XRD of (a) NaMoS₂; (c) KMoS₂; (e) NaNbS₂; SEM of (b) NaMoS₂; (d) KMoS₂; (f) NaNbS₂; the peaks labeled with "*" are formed by the intercalation of H₂O into the interlayers of these layered compounds, which are very sensitive to moisture³.

Li exfoliated Na exfoliated NbS₂ nanohseets NbS₂ nanohseets

Figure S12. a. MoS_2 nanosheets obtained by $LiMoS_2$, $NaMoS_2$ and $KMoS_2$, respectively; b. NbS_2 nanosheets obtained by $LiNbS_2$ and $NaNbS_2$.

Among the three precursors, LiMS₂ is the best for exfoliation, while KMS₂ is the worst. The reason may be attributed to the biggest radius of the hydrated lithium ions, which are formed in the exfoliation process and separate the adjacent layers. This is different from the preparation of the transition metal oxide nanosheets, which are usually achieved by the intercalation of big ions, such as $Cs_{0.7}Ti_{1.825}O_4^4$, $K_4Nb_6O_{17}^5$, RbTaO₃⁶ and so on.

Supplementary Tables

Samples	25 °C	100 °C	200 °C	300 °C
MoS ₂ nanosheets	618	367	0.181	0.0562
Ref-nanosheets	35.4	0.551	0.00279	0.00302

Table S1. Electrical conductivities of the anealed samples (S/cm)

References

1. Yuwen, L.; Yu, H.; Yang, X.; Zhou, J.; Zhang, Q.; Zhang, Y.; Luo, Z.; Su, S.; Wang, L. *Chem. Commun.* **2016**, 52, (3), 529-532.

2. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. *Nature Mater.* **2014**, 13, (12), 1128-1134.

3. Zheng, J.; Zhang, H.; Dong, S.; Liu, Y.; Tai Nai, C.; Suk Shin, H.; Young Jeong, H.; Liu, B.; Ping Loh, K. *Nat. Commun.* **2014**, 5.

4. Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. *J. Am. Chem. Soc.* **1996,** 118, (35), 8329-8335.

5. Saupe, G. B.; Waraksa, C. C.; Kim, H.-N.; Han, Y. J.; Kaschak, D. M.; Skinner, D. M.; Mallouk, T. E. *Chem. Mater.* **2000**, 12, (6), 1556-1562.

6. Fukuda, K.; Nakai, I.; Ebina, Y.; Ma, R.; Sasaki, T. *Inorg. Chem.* **2007**, 46, (12), 4787-4789.