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S1. Crystal images and structure drawings of selected compounds.

Fig. S1. Crystal image of 0D-CuI(tpp)2(4-me-pm).

Fig. S2. Crystal image of 0D-Cu2I2(tpp)2(3-Br-py)2
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Fig. S3. Crystal image of 1D-Cu2I2(tpp)2(2,5-dm-pz).

Fig. S4. Crystal image of 1D-Cu2I2(tpp)2(2-me-pz).
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Fig. S5. Structure plot of 0D-CuI(tpp)2(3-Br-py)2.

Fig. S6. Structure plot of 1D-Cu2I2(tpp)2(2-me-pz).
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S2. PXRD analysis of compounds 1-11.

Fig. S7. PXRD patterns of 1-6. From bottom to top: simulated 1, as made 1, simulated 2, as made 

2, simulated 3, as made 3, simulated 4, as made 4, simulated 5, as made 5, simulated 6, as made 

6.



7

Fig. S8. PXRD patterns of 7-11. From bottom to top: simulated 7, as made 7, simulated 8, as 

made 8, simulated 9, as made 9, simulated 10, as made 10, simulated 11, as made 11.
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Fig. S9. PXRD patterns. From bottom to top: simulated 5, as made 5, 5 after immersed in water 

for 24 h, 5 after exposed to UV for 24 h, simulated 7, as made 7, 7 after immersed in 

water for 24 h, 7 after exposed to UV for 24 h,
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S3. Optical band gaps, emission energies, IQYs and thermal stability 

assessment of compounds 1-10.

Fig. S10. Plot of optical band gaps of compounds 1-10 and their emission wavelengths.
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Fig. S11. Emission wavelengths and IQY values of compounds 1-10.
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Fig. S12. TG profiles of 2 (blue), 6 (black), 10 (red).
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Fig. S13. Thermal decomposition temperatures for 1-10.
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Fig. S14. Mixture of CuI, tpp and 4,6-dm-pm without applying mechanochemical force. Image 

was taken under UV bar (365nm) after the liquid N-ligand was completely dried. 
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Fig. S15. PXRD patterns of simulated 11 (black) and 11 obtained after (solvent-free) manual 

grinding for 10 min (red).
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Fig. S16. Top: Product of 2 prepared by ball-milling under UV radiation. Bottom: PXRD patterns 

of 2, from bottom to top: simulated pattern, sample prepared by manual grinding, and sample 

prepared by ball milling. 
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Fig. S17. PXRD pattern of simulated 2 (black), simulated 8 (red) and white phosphor composite 

12 (blue).
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Fig. S18. Photoluminescence intensity as a function of temperature for selected compounds.  

Each point represents measured internal quantum yield value after sample being heated at the 

given temperature for some time. Blue: 0D-Cu2I2(tpp)2(3-pc)2, Green: 1D-Cu2I2(tpp)2(pm).
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S4. Molecular orbital (MO) energy calculations of the ligands and 

Density of States (DOS) calculation of selective structure

DGDZVP1,2 and 6-311++G(3df,3pd)3-10 were used for the calculation of the HUMO/LUMO 

energies of the ligands and the results are listed in Table S1. 

Table S1. Calculated HOMO-LUMO energy levels of ligands.

Basis Set DGDZVP 6-311++G(3df,3pd)

Name Structure HOMO 

(eV)

LUMO 

(eV)

HOMO 

(eV)

LUMO 

(eV)

Triphenylphosphine (tpp)

-5.962 -0.874 -6.032 -0.985

4-picoline (4-pc)
-7.089 -0.872 -7.117 -0.965

3-picoline (3-pc) -7.056 -0.982 -7.089 -1.073

pyridine (py) -7.175 -1.041 -7.213 -1.120

4,6-dimethyl-pyridimine (4,6-

dm-pm)

-7.001 -1.208 -7.021 -1.257
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4-methyl-pyrimidine (4-me-

pm)

-7.112 -1.381 -7.128 -1.429

3-bromo-pyridine (3-Br-py) --7.228 -1.441 -7.264 -1.492

2-methyl-pyrazine (2-me-pz) -6.971 -1.668 -6.988 -1.726

Pyrimidine (pm) -7.237 -1.549 -7.255 -1.599

2,5-dimethyl-pyrazine (2,5-

dm-pz)

-6.830 -1.560 -6.868 -1.583

1-methyl-benzimidazole (1-

me-bzim)
-6.249 -0.739 -6.260 -0.771

2-propyl-pyrazine (2-pr-pz)
-6.925 -1.623 -6.945 -1.683
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Fig. S19. Calculated density of states (DOS) of 2 by DFT method: total DOS (dotted black); Cu 

3d orbitals (light blue); I 5p orbitals (red); C 2p orbitals (black); N 2p orbitals (blue); P 3p orbitals 

(orange).
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S5. Elemental analysis results of selected compounds.

Table S2. Summary of elemental analysis of compounds 1-10.

Compound C% H% N%

Calculated 52.7 4.0 2.60D-Cu2I2(tpp)2(4-pc)2

Experimental 52.6 3.8 2.5

Calculated 52.7 4.0 2.60D-Cu2I2(tpp)2(3-pc)2

Experimental 54.3 3.4 2.2

Calculated 51.9 3.8 2.60D-Cu2I2(tpp)2(py)2

Experimental 52.4 3.7 3.0

Calculated 51.4 4.1 5.00D-Cu2I2(tpp)2(4,6-dm-
pm)2

Experimental 48.6 4.1 5.2

Calculated 50.3 3.8 5.10D-Cu2I2(tpp)2(4-me-pm)4

Experimental 49.8 3.9 3.7

Calculated 45.2 3.1 2.30D-Cu2I2(tpp)2(3-Br-py)2

Experimental 45.7 3.7 1.7

Calculated 48.7 3.4 2.81D-Cu2I2(tpp)2(pm)

Experimental 51.9 3.2 2.7

Calculated 49.7 3.7 2.71D-Cu2I2(tpp)2(2,5-dm-pz)

Experimental 47.0 3.5 2.8

Calculated 50.9 4.0 2.31D-Cu2I2(tpp)2(2-pr-pz)

Experimental 50.4 3.6 2.4

Calculated 51.8 3.8 2.81D-Cu2I2(tpp)2(2-me-pz)

Experimental 51.2 4.1 2.7
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