

Electronic Supplementary Information

Engineering dielectric constants in organic semiconductors

Ardalan Armin, Dani M. Stoltzfus, Jenny E. Donaghey, Andrew J. Clulow, Ravi Chandra Raju Nagiri, Paul L. Burn,* Ian R. Gentle, Paul Meredith[#]

^aCentre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences and School of Mathematics and Physics, The University of Queensland, St Lucia Campus, Brisbane 4072 (Australia)

[#] Now at: Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, United Kingdom

*Email: p.burn2@uq.edu.au; meredith@physics.uq.edu.au

Contents

1. Effect of excess energy on the internal quantum efficiency
2. NMR spectra of final compounds
3. Differential scanning calorimetry (DSC)
4. Photoluminescence spectra
5. Optical gap and extinction coefficients
6. X-ray analysis
7. Cyclic voltammetry (CV)
8. Mobility data
9. Homojunction OPV data

1. Effect of excess energy on the internal quantum efficiency

Figure S1. a) Internal quantum efficiency (IQE) of a PCPDTBT homojunction cell with the structure ITO/PEDOT/PCPDTBT/Sm:Al. In comparison to heterojunction cells that often exhibit spectrally flat efficiency, a substantial excess energy dependent charge generation can be observed when the excess energy is sufficiently large ($>$ binding energy E_b). b) An energy diagram to elucidate the energy gap (E_g fundamental and optical), exciton binding energy (E_b) and the excess energy (E_{excess}). EA and IP denote electron affinity and ionization potential respectively.

2. NMR spectra of key compounds

Figure S2. ¹H NMR spectrum of 4

Figure S3. ¹³C NMR spectrum of 4

Figure S4. ¹H NMR spectrum of 2a

Figure S5. ^{13}C NMR spectrum of **2a**

Figure S6. ^1H NMR spectrum of **3a**

. Figure S7. ^{13}C NMR spectrum of **3a**

Figure S8. ^1H NMR spectrum of **DG**

Figure S9. ^{13}C NMR spectrum of **DG**

Figure S10. ¹H NMR spectrum of **2b**

Figure S11. ^{13}C NMR spectrum of **2b**

Figure S12. ^1H NMR spectrum of **3b**

Figure S13. ^{13}C NMR spectrum of **3b**

Figure S14. ¹H NMR spectrum of DA

Figure S15. ^{13}C NMR spectrum of **DA**

Figure S16. ^1H NMR spectrum of **5**

Figure S17. ¹³C NMR spectrum of **5**

Figure S18. ¹H NMR spectrum of **PG**

3. Differential Scanning Calorimetry (DSC)

Figure S19. DSC thermograms of a) **PG** and b) **PCPDTBT**. Scan rate is $100\text{ }^{\circ}\text{C min}^{-1}$

Figure S20. a) Solution absorption spectra of **PG** and **PCPDTBT** at the same weight/volume and solid state extinction coefficients (k) as a function of wavelength (WL) for b) Monomers and c) Dimers.

4. Photoluminescence spectra

Figure S21. PL spectra of **DG**, **DA** and **PG** in thin films spin-coated from chloroform onto fused silica.

5. Optical gap

Figure S22. Estimation of the optical gap of **DG**, **DA** and **PG** (~ 1.2 eV) and **PCPDTBT** (~ 1.5 eV) in thin films spin-coated from chloroform onto fused silica.

6. X-ray analysis

Figure S23. Grazing-incidence diffractograms of a) **DG** and **DA**; b) **PG** and **PCPDTBT** films spin-coated from chloroform onto silicon substrates. The red traces have been offset by a factor of 10 for clarity.

Figure S24. XRR profiles and corresponding SLD *versus* thickness plots (inserts) for a) **DA**, b) **DG**, c) **PCPDTBT** and d) **PG**. Individual points represent recorded data and solid black lines indicate the fitting curves. Films were spin-coated from chloroform onto silicon substrates.

7. Cyclic voltammetry (CV)

Figure S25. Cyclic voltammograms (first reduction and oxidations - 10 cycles) of a) **DG**; b) **DA**; c) **PG** and d) **PCPDTBT**.

8. SCLC

Hole/electron mobility measurements were conducted by measuring the Space-Charge-Limited-Current (SCLC) and employing the Mott-Gurney law and Poole-Frenkel models:

$$J = E\sigma + \frac{9}{8}\epsilon_0\epsilon_r\mu \frac{V^2}{d^3} e^{\frac{2E}{E_0}},$$

where ϵ_0 , ϵ_r , μ , E , σ , d and E_0 are the vacuum permittivity, relative permittivity, mobility, electric field, conductivity, film thickness, and field dependence coefficient, respectively. The diode structure ITO/MoO_x/semiconductor/MoO_x/Ag was used for hole only devices and ITO/Al/semiconductor/Al for electron only devices.

Figure S26. Current density-Voltage (J - V) curves of a) electron only devices of **DG** and **DA**; b) hole only devices of **DG**, **DA**, **PCPDTBT** and **PG**; c) electric field dependent mobility of **DG** and **DA** and d) electric field dependent mobility of **PCPDTBT** and **PG**.

9. Homojunction OPV data

Figure S27. J - V curve for DG homojunction device with structure glass/ITO/PEDOT:PSS/**DG** (80 nm)/Sm/Al (PCE 0.3 %)

