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1. Effect of excess energy on the internal quantum efficiency
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Figure S1. a) Internal quantum efficiency (IQE) of a PCPDTBT homojunction cell with the
structure ITO/PEDOT/PCPDTBT/Sm:Al. In comparison to heterojunction cells that often exhibit
spectrally flat efficiency, a substantial excess energy dependent charge generation can be observed
when the excess energy is sufficiently large (> binding energy Ej). b) An energy diagram to
elucidate the energy gap (£, fundamental and optical), exciton binding energy (£},) and the excess

energy (E.xess)- EA and IP denote electron affinity and ionization potential respectively.

2. NMR spectra of key compounds
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Figure S2. 'H NMR spectrum of 4
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Figure S3. 13C NMR spectrum of 4
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Figure S4. 'TH NMR spectrum of 2a
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Figure S5. 13C NMR spectrum of 2a
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Figure S6. '"H NMR spectrum of 3a
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. Figure S7. 3C NMR spectrum of 3a
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Figure S8. 'H NMR spectrum of DG

Figure S9. 13C NMR spectrum of DG
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Figure S10. '"H NMR spectrum of 2b
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Figure S11. 3C NMR spectrum of 2b

Figure S12. '"H NMR spectrum of 3b
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Figure S13. 3C NMR spectrum of 3b
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Figure S15. 3C NMR spectrum of DA
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Figure S16. '"H NMR spectrum of 5
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Figure S17. 3C NMR spectrum of 5

Figure S18. '"H NMR spectrum of PG



3. Differential Scanning Calorimetry (DSC)
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Figure S19. DSC thermograms of a) PG and b) PCPDTBT. Scan rate is 100 °C min!
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Figure S20. a) Solution absorption spectra of PG and PCPDTBT at the same weight/volume and

Dimers.

4. Photoluminescence spectra

solid state extinction coefficients (k) as a function of wavelength (WL) for b) Monomers and ¢)
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Figure S21. PL spectra of DG, DA and PG in thin films spin-coated from chloroform onto fused

silica.

5. Optical gap
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Figure S22. Estimation of the optical gap of DG, DA and PG (~ 1.2 ¢V) and PCPDTBT (~1.5 eV)

in thin films spin-coated from chloroform onto fused silica.

6. X-ray analysis
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Figure S23. Grazing-incidence diffractograms of a) DG and DA; b) PG and PCPDTBT films spin-
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Figure S24. XRR profiles and corresponding SLD versus thickness plots (inserts) for a) DA, b) DG,
c) PCPDTBT and d) PG. Individual points represent recorded data and solid black lines indicate

the fitting curves. Films were spin-coated from chloroform onto silicon substrates.

7. Cyclic voltammetry (CV)
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Figure S25. Cyclic voltammograms (first reduction and oxidations - 10 cycles) of a) DG; b) DA; ¢)
PG and d) PCPDTBT.



8. SCLC

Hole/electron mobility measurements were conducted by measuring the Space-Charge-Limited-

Current (SCLC) and employing the Mott-Gurney law and Poole-Frenkel models:
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where &), &, u, E, 0, d and Ey are the vacuum permittivity, relative permittivity, mobility, electric
field, conductivity, film thickness, and field dependence coefficient, respectively. The diode
structure  ITO/MoOx/semiconductor/MoOx/Ag was used for hole only devices and

ITO/Al/semiconductor/Al for electron only devices.
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Figure S26. Current density-Voltage (J-V) curves of a) electron only devices of DG and DA; b)
hole only devices of DG, DA, PCPDTBT and PG:; c) electric field dependent mobility of DG and
DA and d) electric field dependent mobility of PCPDTBT and PG.



9. Homojunction OPV data
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Figure S27. J-V curve for DG homojunction device with structure glass/ITO/PEDOT:PSS/DG (80
nm)/Sm/Al (PCE 0.3 %)






