Supplementary Information

Controllable dielectric performance of polymer composites via Coulomb-blockade effect with core-shell structured nano-particles

Dan Yang,^{ab} Shuo Huang,^{bc} Mengnan Ruan,^{bc} Yibo Wu,^{ab} Shuxin Li,^{ab} Hao Wang,^{ab}

Jinyu Zhang,^a Haonan Ma,^a Wenli Guo,^{*ab} and Liqun Zhang^{*c}

^aDepartment of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
^bBeijing Key Lab of Special Elastomeric Composite Materials, Beijing 102617, China
^cDepartment of Materials Science and Engineering, Beijing University of Chemical

Technology, Beijing 100029, China

*To whom correspondence should be addressed.

E-mail: W. Guo (gwenli@bipt.edu.cn) or L. Zhang (zhanglq@mail.buct.edu.cn)

Table S1 Summary of dielectric properties and electrical properties of pure NBR and

Sample	Dielectric	Dielectric	Conductivity	DC volume	Electrical breakdown	Energy density	Dielectric relaxation
	constant	loss	S m ⁻¹	resistivity	strength		time
	(100 Hz)	(100 Hz)	(100 Hz)	$(\Omega \cdot cm)$	(kV/mm)	(kJ/m ³)	(s)
Pure NBR	12.28	0.026	2.12E-11	1.29E+10	45±5.0	110.08	1.50E-57
TiO ₂ /NBR	12.84	0.039	3.11E-11	3.02E+09	41±4.4	105.03	1.60E-78
TiO ₂ -PDA/NBR	12.96	0.033	2.83E-11	3.29E+09	43±2.8	96.40	1.30E-59
TiO2-PDA-Ag30/NBR	12.55	0.129	1.22E-10	1.91E+09	30±3.2	49.97	8.10E-81
TiO2-PDA-Ag60/NBR	12.10	0.075	6.41E-11	1.23E+09	35±2.4	65.61	3.30E-85
TiO2-PDA-Ag90/NBR	11.72	0.057	5.37E-11	8.69E+08	39±3.8	78.86	2.50E-133

NBR composites.

Figure S1 Displacement-electric field (D-E) loops of NBR composites at a field of 30 kV/mm.

Figure S1 shows the displacement-electric field (D-E) loops of NBR composites filled with TiO₂, TiO₂-PDA, and TiO₂-PDA-Ag particles at a field of 30 kV/mm. From Figure S1, we can find the maximal electric displacement is obtained by TiO₂-PDA/NBR composite, while the TiO₂-PDA-Ag/NBR composite displayed the minimum electric displacement. This phenomenon maybe attributed to the difference of dielectric constant of the samples.¹ In addition, the TiO₂-PDA-Ag/NBR composite exhibits the narrowest D-E loops and the lowest remnant polarization in comparison with the TiO₂ /NBR composite and TiO₂-PDA/NBR composite.

Reference

1. K. Yang, X. Huang, J. He and P. Jiang, Adv Mater Inter, 2015, 2, 1500361.