Supporting Information

High Efficiency Solid-State Dye-Sensitized Solar Cells using Cobalt(II/III) Redox Mediator

Xiao Li Zhang^{a*}, Wenchao Huang^b, Anna Gu^c, Wanchun Xiang^{c*}, Fuzhi Huang^d, Zheng Xiao Guo^e, Yi-Bing Cheng^{b,d*}, Leone Spiccia^f

^aSchool of Materials Science and Engineering, and State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, Zhengzhou University, 450001, China;

^b Department of Materials Science and Engineering, Monash University, Melbourne VIC 3800, Australia;

^c State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Luoshi Road, Wuhan, China, 430070;

^d State key laboratory of advanced technologies for materials synthesis and processing, Wuhan University of Technology, Luoshi Road, Wuhan, China, 430070;

^e Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK;

^fDepartment of Chemistry, Monash University, Melbourne VIC 3800, Australia;

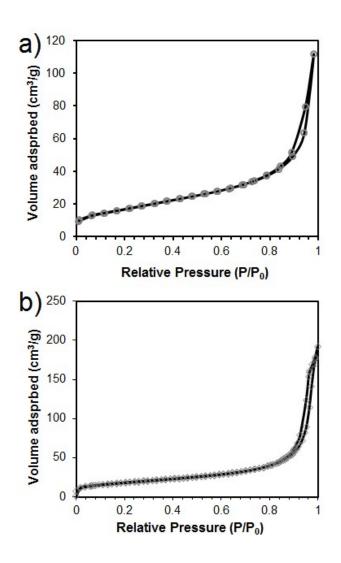
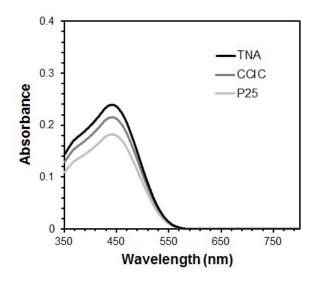



Figure S1. Nitrogen sorption isotherms of CCIC-30nm and Degussa P25 TiO₂ nanoparticles.

Figure S2. Absorbance spectra of the dye detached from sensitized photoanodes prepared using TNA, CCIC-30nm and P25 nanoparticles of same film thickness.

Figure S3. I-V curves of sensitized photoanode films prepared from P25.

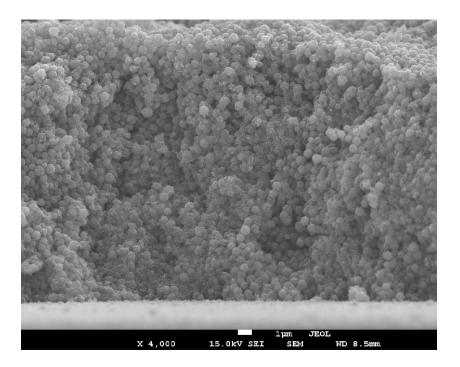
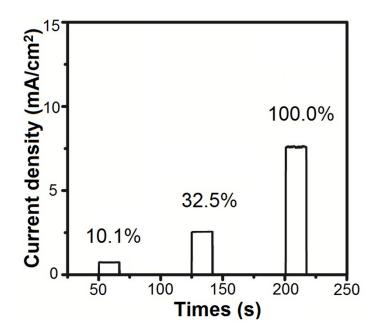



Figure S4. SEM cross-section of the photoanode electrodes prepared from mesoporous TNA.

Figure S5. Photocurrent transient plots of sensitized photoanode films based on P25 nanoparticles measured under varying illumination intensities: 10.1%, 32.5% and 100% of AM 1.5 simulated light.

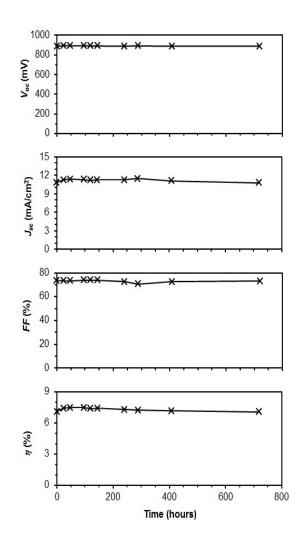


Figure S6. Performance stability testing of sensitized photoanode films prepared from nanoparticles (CCIC).