Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Controlling Assembly and Spin Transport of Tetrathiafulvalene Carboxylate Coated Iron Oxide Nanoparticles

Zhong-Peng Lv,^a Tao Wang,^a Ge-Jing Yuan,^a Zhong-Zhi Luan,^b Di Wu,^b Jing-Lin Zuo*^a and Shouheng Sun*^c

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China. Email: zuojl@nju.edu.cn

^bNational Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China

^cDepartment of Chemistry, Brown University, Providence, Rhode Island 02912, USA. Email: ssun@brown.edu.

Supporting Figures and Tables

Fig. S1. DLS studies of OAm-Fe₃O₄ NPs, OAm-Fe₃O₄ NPs + L_aH , OAm-Fe₃O₄ NPs + L_bH_2 in (a) chloroform:ethanol (10:1/v:v) solvent, and (b) chloroform:ethanol (1:1/v:v) solvent. The concentration of these components (OAm-Fe₃O₄ NPs, L_aH , L_bH_2) are equal to what we used in the ligand exchange process.

Fig. S2. I-V curves of (a) L_a-Fe₃O₄-10/1, (b) L_a-Fe₃O₄-1/1, (c) L_b-Fe₃O₄-10/1, and (d) L_b-Fe₃O₄ 1/1 NP assemblies at different temperatures.

Fig. S3. ZFC-FC curves of (a) L_a -Fe₃O₄-10/1, (b) L_a -Fe₃O₄-1/1, (c) L_b -Fe₃O₄-10/1, and (d) L_b -Fe₃O₄-1/1 NP assemblies.

Fig. S4. Fitting MR-*H* curves and experimental MR-*H* scatterplots of (a) L_a -Fe₃O₄-10/1, (b) L_a -Fe₃O₄-1/1, (c) L_b -Fe₃O₄-10/1, and (d) L_b -Fe₃O₄-1/1 NP assemblies at 300 K. The M_s in the inset equation equals to the *M* of the corresponding sample at 20 kOe, which can be obtained from Fig. 5.

	<i>m</i> (Fe) (wt%)	$m(\mathrm{Fe}_{3}\mathrm{O}_{4})$ (wt%)	<i>m</i> (L) (wt%)	$n (1/nm^2)^{b}$
L _a -Fe ₃ O ₄ -10/1	56.6	78.1	21.9	1.30
L_a -Fe ₃ O ₄ -1/1	59.2	81.8	18.2	1.03
L_{b} -Fe ₃ O ₄ -10/1	57.0	78.7	21.3	1.27
L _b -Fe ₃ O ₄ -1/1	57.9	80.0	20.0	1.18

Table S1. Mass percentage of Fe, Fe_3O_4 and organic layer^{a)} in the L_a - and L_b -coated Fe_3O_4 NPs and the grafting density^{b)} of the corresponding NPs.

a) The mass percentage of Fe₃O₄ is converted from the mass percentage of Fe determined by F-AAS. The mass of organic layer m(L) equales to $1 - m(Fe_3O_4)$.

b) The grafting density n is obtain by assuming a uniform 5.7 nm diameter and 5.2 g/cm³ density for a sphere Fe₃O₄ core.

Table S2. Assignment of the main absorption $bands^{a)}$ in the IR spectra of L_aH , L_bH_2 and the corresponding Fe₃O₄ NPs.

mode assignment	L _a H	L _a -Fe ₃ O ₄ 10/1 NPs	L _a -Fe ₃ O ₄ 1/1 NPs	L _b H ₂	L _b -Fe ₃ O ₄ 10/1 NPs	L _b -Fe ₃ O ₄ 1/1 NPs
<i>v</i> С-Н	2955 m	2957 m	2955 m	2956 m	2957 m	2955 m
	2920 s	2920 s	2920 s	2918 s	2921 s	2921 s
	2851 s	2850 s	2851 m	2850 s	2851 s	2851 s
vC=O and	1674 m			1714 s		
		1637 w	1637 m		1618 m	1619 m
vC-O	1294 m			1304 s		
		1391 s	1379 m		1380 s	1381 s
vC=C	1564 w	1560 w	1564 w	1560 w	1564 m	1564 m
	1531 w	1530 w	1533 w	1550 w	1536 m	1536 m
δCH_2	1466 w	1459 w	1460 w	1470 s	1462 m	1462 m
δΟ-Η	1418 s			1421 w		
δCH ₃	1381 w	b)	b)	1361 w	b)	b)
	1256 w	1259 m	1259 w	b)	1259 s	1259 w
		1093 m			1093 s	
		1020 m			1020 s	
		802 m			802 s	
vS-C-S	889 w	886 w	885 w	890 w	876 w	887 w
Fe-O lattice		800–500 s,br	800–500 s,br		800–500 s,br	800–500 s,br

^{a)} Unit: cm⁻¹; s: strong; m: middle; w: weak; vw: very weak; br: broad.

^{b)} Band that cannot be discerned due to the coverage of other bands.

	С	0	S	Ν	Fe
L _a -Fe ₃ O ₄ 10/1 NPs	51.99	28.18	5.47	0.00	14.36
L _a -Fe ₃ O ₄ 1/1 NPs	43.42	32.63	5.51	0.00	18.45
L _b -Fe ₃ O ₄ 10/1 NPs	48.70	26.40	5.44	0.00	19.46
L _b -Fe ₃ O ₄ 1/1 NPs	47.41	26.57	6.38	0.00	19.64

Table S3. Atomic percentage^{a)} of the main elements in L_aH and L_bH_2 coated Fe₃O₄ NPs.

^{a)} Only C, O, S, N and Fe are included and the sum of their percentage is 100%.