Electronic Supporting Information Available

Red to white polymer light-emitting diode (PLED) based on Eu³⁺-Zn²⁺-Gd³⁺-containing metallpolymer

Lin Liu, Hongyan Li, Peiyang Su, Zhao Zhang, Guorui Fu, Baoning Li, Xingqiang Lü^{*}

Supporting information

Materials and methods

High performance liquid chromatography (HPLC)-grade THF or MeCN was purchased from Fisher Scientific and purified over solvent columns. Other solvents were used as received from Sigma Aldrich and stored over 3 Å activated molecule sieves. Methyl methacrylate (MMA) was dried over CaH₂, distilled and stored under dried N₂ prior to use. Azobis(isobutyronitrile) (AIBN) was purified by recrystallization twice from absolute MeOH prior to use. Other chemicals were commercial products of reagent grade and were used without further purification. All manipulations of air and water sensitive compounds were carried out under dry N₂ using the standard Schlenk line techniques.

Elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer. Fourier Transform Infrared (FT-IR) spectra were recorded on a Nicolet Nagna-IR 550 spectrophotometer in the region 4000-400 cm⁻¹ using KBr pellets. ¹H NMR spectra were recorded on a JEOL EX 400 spectrometer with SiMe₄ as internal standard in CDCl₃ and/or DMSO- d_6 at RT. ESI-MS was performed on a Finnigan LCQ^{DECA} XP HPLC-MS_n mass spectrometer with a mass to charge (m/z) range of 4000 using a standard electro-spray ion source and MeCN as the solvent. Electronic absorption spectra in the UV/Visible region and diffuse reflection (DR) spectra were recorded with a Cary 300 UV spectrophotometer. Visible emission and excitation spectra were collected by a combined fluorescence lifetime and steady-state spectrometer (FLS-980, Edinburgh) with a 450 W Xe lamp. Excited-state decay times were obtained by the same spectrometer but with a μ F900 Xe lamp. The luminescent absolute overall quantum yield (Φ_{em} or Φ_{Eu}^{L}) was determined by the same spectrometer using a 450 W Xe lamp and an integrating sphere. Gel permeation chromatography (GPC) analyses of the polymers were performed using a Waters 1525 binary pump coupled to a Waters 2414 refractive index detector with HPLC THF as the eluant on American Polymer Standard 10 μ m particle size, linear mixed bed packing columns. The GPC was calibrated using polystyrene standards. X-ray photoelectron spectroscopy (XPS) was carried out on a PHI 5700 XPS system equipped with a dual Mg X-ray source and monochromatic Al X-ray source complete with depth profile and angle-resolved capabilities. The powder X-ray diffraction (PXRD) patterns were recorded on a D/Max-IIIA diffractometer with graphitemonochromatized Cu K α radiation (λ = 1.5418 Å). Thermal properties were characterized using Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses on a NETZSCH TG 209 instrument under flowing nitrogen at a heating rate of 10 °C/min. Cyclic voltammetry (CV) measurements was performed on a computer-controlled EG&G Potentiostat/Galvanostat model 283 at room temperature with a conventional threeelectrode cell using using a an Ag/AgNO₃ (0.1 M) reference electrode, Pt carbon working electrode of 2 mm in diameter, and a platinum wire counter electrode. CV of all compounds was performed in nitrogen-saturated dichloromethane containing 0.1 M Bu₄NPF₆ as supporting electrolyte. The cyclic voltammogram was measured at a scan rate of 100 mV·s⁻¹. The highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy levels of **Poly(2-co-MMA-co-8)** (120:1[**2**/**8** = 2:1 or 1:2]) are calculated according to the following equations,¹ $E_{HOMO} = -(E_{OXD} - E_{OXD, ferrocene}) - 4.8 \text{ eV}$, $E_{LUMO} = E_{HOMO} + E_g$ eV, and where E_g is the energy band gap estimated from the low-energy edge of the absorption spectra from the samples. The HOMO and LUMO energy levels for the other used materials were obtained from the literatures.²

X-ray Crystallography

Single crystals of $[Zn(L)(4-vinyl-Py)Eu(NO_3)_3]$ (6) of suitable dimensions were mounted onto thin glass fibers. All the intensity data were collected on a Bruker SMART CCD diffractometer (Mo-K α radiation and $\lambda = 0.71073$ Å) in Φ and ω scan modes. Structures were solved by direct methods followed by difference Fourier syntheses, and then refined by fullmatrix least-squares techniques against F² using SHELXTL.³ All other non-hydrogen atoms were refined with anisotropic thermal parameters. Absorption corrections were applied using SADABS.⁴ Hydrogen atoms were placed in calculated positions and refined isotropically using a riding model. Crystallographic data and refinement parameters for complex monomer **6** are presented in Table S1, and relevant atomic distances and bond angles are collected in Table S2. CCDC reference number 1535076 for complex monomer **6**.

Synthesis of PMMA activated with AIBN

The homogeneous polymerization of MMA in activation with AIBN for comparison was carried out in a Fisher-Porter glass reactor and protected by N₂ according to the typical procedure.⁵ Yield: 91%. FT-IR (KBr, cm⁻¹): 3000 (w), 2952 (m), 2843 (w), 1730 (s), 1631 (m), 1602 (m), 1486 (w), 1454 (w), 1433 (w), 1398 (m), 1384 (m), 1336 (w), 1269 (w), 1238 (w), 1138 (vs), 993 (m), 914 (w), 840 (m), 806 (w), 750 (m), 618 (w), 544 (w), 513 (w), 482 (w). ¹H NMR (400 MHz, DMSO- δ_6 -CDCl₃ (v/v = 10:1)): δ (ppm) 3.57 (s, 3H, -COOMe), 1.85 (b, 2H, - CH₂), 0.91 (m, 3H, -CH₃).

Fabrication and testing of PLEDs

The two PLEDs I-II were fabricated on ITO coated glass substrates with a sheet resistance of 20 Ω per square. Patterned ITO coated glass substrates were washed with acetone, detergent, distilled water and isopropanol in an ultrasonic bath. After being exposed under oxygen plasma for 15 minutes, PEDOT:PSS from water solution was spin-coated (at 2000 rpm) on the substrate and followed by drying in a vacuum oven at 140 °C for 20 min, giving a film of 35 nm thickness. For Device I, PVK ($M_w = 1 \times 10^6$ g/mol) as the hole-transporting material, was spin-coated from chlorobenzene solution onto the PEDOT:PSS layer. A mixture of CBP, PBD and **Poly(2-co-MIMA-co-8)** (120:1[**2**/**8** = 2:1]) as the emitting layer in CH₂Cl₂ solution (at a concentration of 10 mg/mL) was prepared under N₂ atmosphere and spin-coated on the PVK layer. Subsequently, the TPBI layer (60 nm) was then thermally deposited onto the emitting layer. Finally, a thin layer of LiF (1 nm) followed by 100 nm thick Al capping layer was deposited onto the substrate under vacuum of 10⁻⁶ Pa.

As to device II, a mixture of PVK:PBD:**Poly(2-***co***-MIMA-***co***-8)** (120:1[**2**/**8** = 1:2]) as the emitting layer in CH_2Cl_2 solution (at a concentration of 10 mg/mL) was prepared under N₂ atmosphere and directly spin-coated on the PEDOT:PSS layer. The typical active area of the two devices is 0.15 cm². Current density(*J*)-voltage(*V*)-luminance (*L*) was collected using a Keithley 2400 source meter equipped with a calibrated silicon photodiode. The electroluminescent (EL) spectra were measured by a PR655 spectrometer. The eternal quantum efficiencies (EQE) values were determined by a Si photodiode with calibration in an integration sphere (IS080, Labsphere).

References

- 1 H. Y. Chen, C. T. Chen and C. T. Chen, *Macromolecules*, 2010, **43**, 3613-3623.
- 2 E. Zysman-Colman, S. S. Ghosh, G. Xie, S. Varghese, M. Chowdhury, N. Sharma, D. B. Cordes, A. M. Z. Slawin and I. D. W. Samuel, *ACS Appl. Mater. & Interfaces*, 2016, **8**, 9247-9253.
- 3 G. M. Sheldrick, SHELXL-97: Program for crystal structure refinement, Göttingen, Germany, 1997.
- 4 G. M. Sheldrick, SADABS, University of Göttingen, 1996.
- 5 W. A. Braunecker and K. Matyjaszewski, Prog. Polym. Sci., 2007, 32, 93–146.

Compound	6
Empirical formula	$C_{29}H_{25}N_6O_{13}ZnEu$
Formula weight	882.88
Crystal system	Monoclinic
Space group	P2(1)/c
Т/К	296 (2)
a/Å	9.421 (8)
b/Å	15.789 (12)
c/Å	22.299 (18)
α/°	90
в/°	102.2
γ/°	90
V∕ų	3242 (4)
Ζ	4
ρ/g·cm⁻³	1.809
Crystal size/mm	$0.25 \times 0.24 \times 0.21$
μ(Mo-Kα)/mm ⁻¹	2.733
Data/restraints/parameters	5775/99/451
Quality-of-fit indicator	0.797
No. Unique reflections	5775
No. Observed reflections	14468
Final <i>R</i> indices $[l > 2\sigma(l)]$	$R_1 = 0.0647$
	$wR_2 = 0.1472$
Final R indices (all data)	$R_1 = 0.1512$
	wR ₂ = 0.1856

 Table S1 Crystallographic data and refinement parameters for complex monomer 6

Complex monomer 6					
Zn(1)-N(1)	2.055(9)	Zn(1)-N(2)	2.070(9)		
Zn(1)-N(6)	2.044(10)	Zn(1)-O(2)	2.036(7)		
Zn(1)-O(3)	2.013(8)	Eu(1)-O(1)	2.75(9)		
Eu(1)-O(2)	2.373(8)	Eu(1)-O(3)	2.372(9)		
Eu(1)-O(4)	2.694(10)	Eu(1)-O(5)	2.610(2)		
Eu(1)-O(6)	2.44(2)	Eu(1)-O(8)	2.454(13)		
Eu(1)-O(9)	2.492(12)	Eu(1)-O(11)	2.428(11)		
Eu(1)-O(12)	2.508(12)	C(28)-C(29)	1.284(19)		
N(1)-Zn(1)-N(2)	80.5(4)	N(1)-Zn(1)-N(6)	80.5(4)		
N(1)-Zn(1)-O(2)	91.9(3)	N(1)-Zn(1)-O(3)	151.5(3)		
O(1)-Eu(1)-O(4)	171.8(3)	O(2)-Eu(1)-O(3)	67.1(3)		
O(5)-Eu(1)-O(6)	46.7(7)	O(8)-Eu(1)-O(9)	48.7(5)		
O(11)-Eu(1)-O(12)	47.0(5)				

Table S2 Relevant atomic distances and bond angles for complex monomer 6

Table S3 The photophysical property of complex monomers 2-4 and 6-8 in dilute MeCN solution (1×10^{-5} M) and metallopolymers Poly(MMA-co-2), Poly(MMA-co-8), Poly(2-co-

	Absorption	Excitation	Emission
Compound	λ_{ab}/nm	λ_{ex}/nm	λ _{em} /nm (τ, Φ (%))
2	212, 274, 296, 334, 352	380	594, 612 (251 μs, 42.0), 651, 701
3	212, 272, 298, 332, 354	380	445, 480 (sh)
4	214, 272, 298, 334, 356	388	442 (2.5 ns)
	-	343	494 (11 μs), 528
6	234, 304, 336	366	500 (w)
7	236, 302, 338	365	495 (w)
8	236, 302, 337	365	500 (4.7 ns, 7.8)
		350	502 (6.4 ns)
Poly(MMA-co-2) (60:1)	224, 266, 300, 368, 394	376	594, 612 (359 μs), 651, 701
Poly(MMA-co-2) (120:1)	224, 265, 300, 366, 392	378	594, 612 (472 μs), 651, 701
Poly(MMA-co-2) (240:1)	222, 268, 298, 368, 394	378	594, 612 (418 μs), 651, 701
Poly(MMA-co-4) (120:1)		361	496 (35 μs)
Poly(MMA-co-8) (60:1)	212, 312, 348	336, 398	493 (46.4 ns)
Poly(MMA-co-8) (120:1)	212, 316, 352	335, 404	493 (39.2 ns)
Poly(MMA-co-8) (240:1)	216, 312, 350	335, 398	492 (34.1 ns)
		341	502 (88.1 ns)
Poly(2-co-MMA-co-8) (120:1[2/8 = 2:1])	224, 306, 348	365	590, 612 (608 μs, 64.3), 652, 701
Poly(2-co-MMA-co-8) (120:1[2/8 = 1:2])	212, 404	380	498 (29.7 ns, 590, 612 (532 μs, 17.1), 652, 701
Poly(4-co-MMA-co-8) (120:1[4/8 = 2:1])	212, 404	355, 376	501 (9 μs, 77 K)

MMA-co-8) and Poly(4-co-MMA-co-8) in solid state at RT or 77 K	

Table S4 GPC data of the samples of PMMA and metallopolymers Poly(MMA-co-2),

Sample	Monomers	MMA/monomer	$M_n^a/g \text{ mol}^{-1}$	PDI ^b
РММА	MMA	-	40324	1.08
Poly(MMA- <i>co</i> -1)	MMA and 1	120:1	10981	1.13
Poly(MMA- <i>co</i> -2)	MMA and 2	60:1	5881	1.09
Poly(MMA- <i>co</i> -2)	MMA and 2	120:1	10734	1.12
Poly(MMA- <i>co</i> -2)	MMA and 2	240:1	17842	1.19
Poly(MMA- <i>co</i> -4)	MMA and 4	120:1	10115	1.15
Poly(MMA- <i>co</i> -5)	MMA and 5	120:1	10081	1.10
Poly(MMA- <i>co</i> -8)	MMA and 8	60:1	5487	1.07
Poly(MMA- <i>co</i> -8)	MMA and 8	120:1	10212	1.14
Poly(MMA- <i>co</i> -8)	MMA and 8	240:1	16910	1.21
Poly(1- <i>co</i> -MMA- <i>co</i> -5)	MMA, 1 and 5	120:1[1/5 = 1:1])	10103	1.18
Poly(2- <i>co</i> -MMA- <i>co</i> -8)	MMA, 2 and 8	120:1[2/8 = 2:1])	10876	1.17
Poly(2- <i>co</i> -MMA- <i>co</i> -8)	MMA, 2 and 8	120:1[2/8 = 1:2])	10142	1.23
Poly(4- <i>co</i> -MMA- <i>co</i> -8)	MMA, 4 and 8	120:1[4/8 = 2:1])	10745	1.19

Poly(MMA-co-8), Poly(1-co-MMA-co-5), Poly(2-co-MMA-co-8) and Poly(4-co-MMA-co-8)

 ${}^{a}M_{n}$ is the number-average molecular weight. ${}^{b}PDI$ = $M_{w}/M_{n},$ where M_{w} is the weight-

average molecular weight.

PLED	V _{on} ^a (V)	CE _{max} ^b (cd/A)	PE _{max} ^c (Im/W)	L _{max} ^d (cd m ⁻²)	EQE _{max} (%)	CIE _{EL} ^e
I	20	0.25	0.037	5.9	0.20	(0.664, 0.329)
П	/	0.005	0.001	0.28	0.003	(0.339, 0.288)

Table S5 Electroluminescent performance of the red-light PLED I and the white-light PLED II

^a The turn-on voltage at which luminance reaches 1 cd/m². ^bMaximum current efficiency at

21 V. ^cMaximum power efficiency at 21 V. ^dMaximum brightness at 21 V. ^eCIE coordinates

from EL at 21 V.

Figure S1. UV-visible absorption spectra of complex monomers 2-4 and 6-8 in dilute MeCN ($(1 \times 10^{-5} \text{ M})$ at RT.

Figure S2. Energy level diagram and energy transfer process for the complex monomers and

metallopolymers.

Figure S3. PXRD patterns of PMMA and metallopolymers Poly(MMA-co-2) (120:1), Poly(MMA-co-8) (120:1) and Poly(2-co-MMA-co-8) (120:1[2/8 = 2:1 or 1:2]) in the solid state.

Figure S4. TG curves of complex monomers 2, 8 and PMMA and TG and DSC (inset) curves of

Poly(2-co-MMA-co-8) (120:1[**2**/**8** = 1:2]) in solid state.

Figure S5. DR spectra of Poly(MMA-co-2) (120:1), Poly(MMA-co-8) (120:1) and Poly(2-co-MMA-co-8) (120:1[2/8 = 2:1 or 1:2]) in the solid state at RT.

Figure S6. Emission and excitation spectra of Poly(MMA-co-4) (120:1), Poly(MMA-co-8) (120:1) and Poly(4-co-MMA-co-8) (120:1[2/8 = 2:1]) in the solid state at 77 K.

Figure S7. Normalized visible emission spectrum comparison of CBP:PBD:Poly(2-co-MMAco-8) (120:1[2/8 = 2:1]) (65%:35%:5%) with Poly(2-co-MMA-co-8) (120:1[2/8 = 2:1]), PVK:PBD:Poly(2-co-MMA-co-8) (120:1[2/8 = 1:2]) (65%:35%:5%) with Poly(2-co-MMA-co-8) (120:1[2/8 = 1:2]) in solid state.

Figure S8. Normalized visible emission spectra of CBP, PBD and PVK and the UV-visible

absorption spectra of Poly(2-co-MMA-co-8) (120:1[2/8 = 2:1]) and Poly(2-co-MMA-co-8)

(120:1[2/8 = 1:2]) in CH₂Cl₂ solution.

