Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Rapid detection of an anthrax biomarker based on the recovered fluorescence of carbon dots-Cu(II) system

Pingjing Li^{1,2}, Ann Nee Ang¹, Huatao Feng¹, Sam F.Y. Li^{1,2*}

- 1. Chemistry department, National University of Singapore, 3 Science Drive 3,
- S117543
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411

Fig. S1 Emission spectra under 365nm excitation of CDs prepared at different pH.

Fig. S2 UV/Vis absorption (Abs) spectra in the absence and presence of Cu(II).

Fig. S3 pH effect on the fluorescence of CDs. I_R is the fluorescent ratio of I_{420}/I_{352} .

Fig. S4 Photostability of CDs illustrated with time-course study of fluorescence ratio of CDs at two different fluorescence wavelengths by illumination with a UV lamp (365nm). I_R is the fluorescence ratio of I_{420}/I_{352} .

Fig. S5 Effect of salt on fluorescence of CDs. I_R is fluorescence ratio of I_{420}/I_{352} .

Fig. S6 Changes of (A) fluorescence intensity ratio of I_{420}/I_{352} and (B) fluorescence intensity of I_{420} only on CDs with different dilution factors in a given Cu(II) concentration of 1000 µg/L.

Fig. S7. pH effect of CDs-Cu(II) quenching system. Conditions: CDs concentration, 90ug/mL; Cu(II) concentration: 500 μ g/L; incubation time: 5 min; fluorescence intensity ratio of CDs; I_o and I are ratio fluorescence intensity in the absence and presence of Cu(II), respectively.

Fig. S8 Effect of reaction time on CDs/Cu(II) system. Conditions: CDs concentration, 90 μ g/mL; Cu(II) concentration: 2000 μ g/L; pH 6.0; fluorescence intensity ratio of CDs: I_R=I₄₂₀/I₃₅₂; and I_o and I are fluorescence intensity in the absence and presence of Cu(II), respectively.

Fig. S9 Fluorescence life-time decay plot for CDs, CDs-Cu(II) and CDs-Cu(II)-DPA.

Fig. S10 Zeta potential of CDs with and without 1000 μ g/L of Cu(II) at different pH.

Fig S11. The relationship curve of $1/(I_0-I)$ and $1/C_{Cu(II)}$ for CDs. (R = 0.9962)

Fig. S12. pH effect on restoration of CDs-Cu(II) system with addition of DPA. Conditions: CDs concentration, 90 μ g/mL; Cu(II) concentration: 2000 μ g/L; DPA concentration, 10 μ mol/L; incubation time: 2 min; fluorescence intensity ratio of CDs: I_R=I₄₂₀/I₃₅₂; and I_o and I are fluorescence intensity in the absence and presence of DPA in CDs-Cu(II) sensor system, respectively.

Fig. S13. Incubation time effect on the restoration of CDs-Cu(II) system with addition of DPA. Conditions: CDs concentration, 90 μ g/mL; Cu(II) concentration: 2000 μ g/L; DPA concentration, 10 μ mol/L; pH 5.5; the fluorescence intensity ratio of CDs I_R=I₄₂₀/I_{352;} and I_o and I are fluorescence intensity in the absence and presence of DPA in CDs-Cu(II) sensor system, respectively.

Comple	integrated fluorescence	UV	Quantum yield	
Sample	intensity(F)	Absorbance	(Φ)/%	
Quinine sulfate	65465432	0.063	54	
CDs-1(pH 3.0)	4918567	0.018	14.2	
CDs-2(pH 5.0)	14734533	0.031	24.7	
CDs-3(pH 7.2)	3694698	0.015	12.8	
CDs-3(pH 8.5)	2035933	0.023	4.6	

Table S1. Quantum yield (QY) calculation of the CDs at 365 nm excitation.

Table S2 Performance evaluation of CDs for Cu(II) and DPA detection.

	Cu(II)	DPA
Linear Range	1-500 μg/L	0.25-20 μmol/L
Equation	y=(0.0846±0.0008)x+(6.8852	y=(0.1589±0.0110)x+(1.1214±0.
	±0.1987)	109)
R-square	0.9919	0.9971
LOD	0.16 µg/L	0.079 µmol/L
3s(blank)/slope		
RSD (n=11)		
	2.75% ^a	1.52% ^d
	0.58% ^b	2.22% ^e
	0.62% ^c	1.78% ^f

Cu(II) concentration for RSDs: ^a, 20 µg/L; ^b, 100 µg/L; ^c, 500 µg/L.

DPA concentration of RSDs: d, 1 µmol/L; e, 10 µmol/L; f, 20 µmol/L

	R-square	α_1	t_1	α_2	t_2	τ/ns
DA	0.99791	961.8555	6.65839	2397.678	1.90147	4.68
DA-Cu	0.99866	1860.916	2.00249	887.8286	6.47747	4.72
DA-Cu-	0 00787	2202 601	1 60077	1004 005	6 22502	1 5 2
DPA	0.99787	2382.081	2382.081 1.090//	1084.085	0.22392	4.33

Table S3. Average lifetime fit by Origin software using ExpDecay2

Table S4 Zeta potential, conductivity and average size of CDs, CDs-Cu(II), and CDs-Cu(II)-DPA at pH 5.5.

	Zeta potential	Conductivity	Average size measured by
	/mV	/mS/cm	DLS
			/nm
CDs	-15.8	6.9	39.3
CDs-Cu(II)	-6.2	10.1	420.4
CDs-Cu(II)-DPA	-8.89	9.11	109.5

	Cu(II)			DPA		
	Added	Found	Recovery	Added	Found	Recovery
	$/\mu g/L$	/ µg /L	/%	/µmol/L	/µmol/L	/%
Tap water	0	11.41±0.97	-	0	N.D.	-
	40	49.12±2.37	94.3	2	1.87±0.07	93.4
	400	381.20±21.08	95.3	15	14.15±0.83	94.3
Rain water	0	9.82±0.63	-	0	N.D.	-
	40	49.20±1.98	98.5	2	1.83±0.06	91.3
	400	391.60±28.31	97.9	15	13.88±1.02	92.5
Reservoir	0	23.10±1.21	-	0	N.D.	-
water	40	59.62±3.23	91.3	2	1.75±0.07	87.4
	400	357.60±19.32	89.4	15	13.59±0.85	90.6

Table S5: Concentration of Cu(II) and DPA in real water samples (n=3).

Recovery = (amount found in spiked sample - amount found in original sample) \times 100 / amount added.

N. D. : not detected

Added standard DPA	Founded DPA	\mathbf{P}_{aaa}	
/µmol/L	$(10^{-6}M)$ (10 ⁻⁶ M)		
0	N.D.	-	
2	1.83 ± 0.05	91.5	
10	9.24 ± 0.19	92.4	

Table S6. Determination of DPA in fetal bovine serum samples (n=3).