Benzyl viologen-assisted simultaneous exfoliation and *n*-doping of MoS₂ nanosheets via a solution process

Kiyoung Jo[†], Jaeyoo choi[†], and Heesuk Kim^{†, \ddagger ,*}

[†]Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. [‡] Nano-Materials and Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.

KEYWORDS : MoS₂ nanosheets, benzyl viologen, simultaneous exfoliation and *n*-doping, electrical properties, Seebeck coefficient

Fig. S1 XPS spectra of (a) S(2p) and (b) C(1s) peaks of bulk MoS_2 and $MSBV_{50wt\%}$.

Fig. S2 Thermogravimetric analysis (TGA) data of bulk MoS₂, BVCl₂, and MSBV_{50wt%}.

Fig. S3 AFM image of $MSBV_{0wt\%}$ which denotes MoS_2 reacted only with hydrazine.

Fig. S4 Raman spectrum of bulk MoS₂ and MSBV_{50wt%}.

The peak separation between A_{1g} and E_{2g}^{1} mode is dependent on the number of layers.¹ As shown in Figure S4, bulk MoS₂ has its A_{1g} and E_{2g}^{1} modes at 407.7 and 382.5 cm⁻¹, respectively, leading to a peak separation of 25.2 cm⁻¹. In contrast, the E_{2g}^{1} mode of MSBV_{50wt%} upshifts from 382.5 to 385.0 cm⁻¹, creating a peak separation of 22.7 cm⁻¹.

Fig. S5 Seebeck coefficient of $MSBV_{50wt\%}$ and conventional n-type thermoelectric materials at room temperature.

Fig. S6 (a) Seebeck coefficient and (b) electrical conductivity of MSBV50wt% as a function of time.

Peaks	Binding er	Binding energy shift	
	Before BV doping	After BV doping	(eV)
Mo 3d _{5/2}	229.48	229.71	+0.23
Mo 3d _{3/2}	232.63	232.85	+0.22
S 2p _{3/2}	162.30	162.56	+0.26
S 2p _{1/2}	163.50	163.79	+0.29

Table S1. Energy shift of XPS core levels in $MSBV_{50wt\%}$ before and after BV doping.

Table	S2.	Carrier	properties	of	the	bulk	MoS_2 ,	MSBV _{0wt%} ,	MSBV _{50wt%} ,	and	previous	n-
doped	MoS	S_2 monol	ayers.									

	Hall mobility (cm ² ·V ⁻¹ ·s ⁻¹)	Bulk carrier concentration (cm ⁻³)	Sheet carrier concentration (cm ⁻²)
Bulk MoS ₂	1.40	8.77×10 ¹³	9.21×10 ¹¹
MSBV _{0wt%}	2.30	2.77×10^{13}	2.63×10 ¹¹
MSBV _{50wt%}	2.39	2.97×10^{14}	2.52×10^{12}
Cl-MoS ₂ 1L [5]	60.0	N.A.	9.2×10 ¹²
Cs ₂ CO ₃ -MoS ₂ 1L [6]	4	N.A.	3.5×10 ¹¹
BV-MoS ₂ 1L [7]	24.7	N.A.	1.2×10^{13}
APTMS-MoS ₂ 1L [8]	2.06	N.A.	7.2×10^{12}

Table S3. S/Mo and O/Mo area ratios of the bulk MoS_2 , $MSBV_{50wt\%}$, and $MSBV_{50wt\%}$ annealed at 280 °C. Note that they were calculated by measuring the ratios of the peak areas and correcting them for sensitivity factors to obtain corrected peak area ratios.

	S/Mo	O/Mo	O/Mo	O/Mo
		(total)	(MoO ₃)	(MoO ₂)
Bulk MoS ₂	1.90	0.0907	0.0707	0.0200
MSBV	2.01	0.0874	0.0647	0.0227
Annealed MSBV	1.20	0.733	0.613	0.120

References

- (1) C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, *ACS Nano*, 2010, **4**, 2695-2700.
- (2) T. Fukumaru, T. Fujigaya and N. Nakashima, Sci. rep., 2015, 5, 7951.
- (3) N. Mateeva, H. Niculescu, J. Schlenoff and L. R. Testardi, *J. Appl. Phys.*, 1998, **83**, 3111-3117.
- (4) Y. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee and U. Jeong, *Adv. Mater.*, 2013, **25**, 1425-1429.
- (5) L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs and P. D. Ye, *Nano Lett.*, 2014, **14**, 6275-6280.
- (6) J. D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X.-A. Zhang, L. Wang, H. Zhang,A. T. S. Wee and W. Chen, *ACS Nano*, 2014, 8, 5323-5329.
- (7) D. Kiriya, M. Tosun, P. Zhao, J. S. Kang and A. Javey, J. Am. Chem. Soc., 2014, 136, 7853-7856.
- (8) Y. Li, C.-Y. Xu, P. Hu and L. Zhen, ACS Nano, 2013, 7, 7795-7804.