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S1 Beam Profiling

To determine the minimum spot size of the beam (ω0) a wafer of crystalline
silicon was ablated at different pulse energies following the technique outlined
in reference [1]. This technique expresses the spatial energy distribution of a
Gaussian beam as

E(r) = E0exp(−r2/w2
0). (1)

r2 = w2
0(lnE0 − lnE(r)) (2)

Here r is the measured beam radius and E0 is the peak fluence at the
center of the beam. This equation can then be rewritten as (2). From this
it is clear that the minimum spot size may be found by measuring the slope
of a semi-log plot of beam radius squared versus E0. The beam radius was
measured from the ablation spots in the silicon wafer, which are shown in
Fig. S1 (a)-(h). In Fig. S1 (i) the experimental data is fit to equation (2),
which returns a minimum spot size of 2.5µm for the beam.
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Fig. S1: Microscope images of the ablation of a silicon wafer at pulse energies
of (a) 2.22µJ, (b) 1.82µJ, (c) 1.51µJ, (d) 1.21µJ, (e) 0.95µJ, (f)
0.73µJ, (g) 0.43µJ, (h) 0.19µJ. (i) a semi-log plot of the squared
ablation radius versus E0.
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S2 Absorption spectroscopy

Fig. S2: The absorbance of PI measured on a PerkinElmer Lambda 1050
UV/Vis/NIR Spectrophotometer. The absorption edge was deter-
mined to be 2.3 eV.
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S3 Pulse energy dependence

Fig. S3: The pulse energy dependence for ablation of a PI film during DLW
at a focus depth of 50µm below the surface and a scan speed of
10 pulses/µm. Figure (a) illustrates the surface ablation in the sam-
ple cross-section at various pulse energies. In (b) the measured ab-
lation area is plotted as a function of laser fluence. The ablation
threshold for the PI film is determined from the X-intercept of a
linear fit to this data, which corresponds to a 0.95µJ pulse energy
under these conditions.
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S4 Pulse length dependence

Fig. S4: A microscope image of a cross-sectioned PI film after laser modifi-
cation at a focal depth of 40µm using 1.5 ps pulses and several scan
speeds.
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S5 Mathematical foundation for the thermal model

The temperature rise inside of PI due to the non-linear absorption of fem-
tosecond laser radiation was solved using the three-dimensional heat diffusion
equation with a source, which is presented in (3). Here D is the heat diffu-
sivity of the PI, ρ is the density, and Cp is the heat capacity.

∂T (x, y, z, t)
∂t

=D∇2T (x, y, z, t) + Q(x, y, z, t)
ρCp

(3)

Q(x, y, z, t) = Q0 exp(−(x − vt)
2 − y2

ω2
0

+ −z2
ωz

)
N

∑
n=1

δ(t − n/f) (4)

Q0 =
Eα

ω2
0ωzπ3/2 (5)

Q(x,y,z,t) represents the laser heat source [2], which has been expressed
in (4). The variable v represents the speed of the laser scan, f the number
of pulses per second, and N the number of pulses simulated. The constant
Q0 is the peak power of the beam at the center, which has been solved for
in (5) by integrating (4) over all space and equating it to the pulse energy
(E) multiplied by the non-linear absorbency of the sample (α). The length
of the pulses are considered to be infinitely small compared to the time-
scale for heat diffusion, therefore the time dependant arrival of the pulses is
represented using the Dirac delta function, δ.

ωz ≃ z ([
tan(sin−1(NA/n1)
tan(sin−1(NA/n2)

] − 1) (6)

Variables ω0 and ωz represent the size of the beam focus perpendicular
and parallel to the beam direction, respectively. In this model the stretching
of the focus due to spherical aberrations was accounted for by calculating
the refraction of the marginal rays at the air/PI interface [3], as shown in
(6). In this equation NA is the numerical aperture of the focusing lens, z is
the nominal focusing depth, n1 is the refractive index of the initial medium
(air), and n2 is the refractive index of the new medium (PI).

The equation in (3) was solved using the Green’s function method [4]. The
boundary condition for the problem is that we assume the initial temperature
of the sample to be uniform and equal to the room temperature, T (x, y, z,0) =
T0. The advantage of the Green’s function method is that the formula can
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be broken down and solved for each dimension independently first, then
combined:

G(x, y, z, t∣x′, y′, z′, t′) = Gx(x, t∣x′, t′)Gy(y, t∣y′, t′)Gz(z, t∣z′, t′). (7)

∂T (x, t)
∂t

=D∇2T (x, t) (8)

T (x, t) = T0√
4πDt

∫
∞

−∞
exp(−(x − x

′)2
4Dt

) dx′ (9)

To begin, one must first solve a homogeneous heat diffusion equation
in one-dimension [4], as illustrated in (8). The solution to this differential
equation is (9).

G(x, t∣x′, t′) = 1√
4πD(t − t′)

exp(−(x − x
′)2

4D(t − t′)) (10)

T (x, y, z, t) = ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
G(x, y, z, t∣x′, y′, z′, t′)T0 dx′ dy′ dz′+

1

ρCp
∫

t

0
∫

∞

−∞ ∫
∞

−∞ ∫
∞

−∞
G(x, y, z, t∣x′, y′, z′, t′)Q(x′, y′, z′, t′) dx′ dy′ dz′ dt′

= T0 +
N

∑
n=1

Eα

ρCpπ3/2(ω2
0 + 4D(t − n/f))

√
ω2
z + 4D(t − n/f)

exp( −(x − tv)2 − y2
ω2
0 + 4D(t − n/f) −

z2

ω2
z + 4D(t − n/f)) (11)

Comparing (9) to the definition for the Green’s function, one can deter-
mine the one-dimensional Green’s function (10). Using this same format for
the y and z components and substituting them into (7), the final solution to
(3) can be expressed as (11).

The constants used to solve (11) for the bulk irradiation of PI are sum-
marized in Tab. S1.
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Tab. S1: Constants used to solve the heat diffusion model in PI.
Variable Value Source

v 10 and 5 mm/s set in stage
f 10 000 Hz set in laser source
E 0.5µJ set using optical attenuator
T0 300 K room temperature
α 0.57 ± 0.06 measured during DLW

ρ 1420 kg/m3 taken from DuPontTM Kapton® HN Technical Data Sheet [5]

Cp 1090 J/kg K taken from DuPontTM Kapton® HN Technical Data Sheet [5]

D 7.75E-7 m2/s taken from DuPontTM Kapton® HN Technical Data Sheet [5]
ω0 2.5µm measured through beam profiling
ωz 50µm calculated using (6) and confirmed experimentally in Fig.1
n1 1.0 refractive index of air

n2 1.7 taken from DuPontTM Kapton® HN Technical Data Sheet [5]



S6 Via IV measurements S10

S6 Via IV measurements

Fig. S5: The IV curves for 5 vias fabricated at 10000 pulses/µm.
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S7 Electrical turn-on procedure

Fig. S6: The turn on of a single DLW via written at 10000 pulses/µm using
a 0−500−0 V sweep. A compliance value of 2 mA is used.
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S8 Electrical stability measurements

Fig. S7: The current stability of a single DLW via over time and without
applied bias. The average current loss was 0.06%/hour.
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