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Electric Polarization

–0.2

0

0.2

–20 –10 0 10 20

–0.2

0

0.2

Electric field (kV/cm)E

178 K

168 K

P
o
la

ri
za

ti
o
n

(
C

/c
m

 )
P

μ
2

Figure S1: Electric field dependence of the electric polarization of 1 obtained along the axis
perpendicular to the (035) plane at 168 and 178 K.
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Additional Dielectric Spectroscopy Data
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Figure S2: Inverse temperature dependence of the mean relaxation time. The observed
linear behavior indicates Arrhenius-type temperature dependence: τ = τ

∞
e−Ea/kBT , where

the activation energy Ea = 0.33(2) eV and the attempt relaxation time τ
∞

= 3.9(9)×10−16 s.
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Additional EPR Data
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Figure S3: (a) Simulated Q-band spectrum using g = 2.0002, Aiso = −262 MHz, D =
1.8 GHz and E = 100 MHz. The experimental spectrum of 2 is presented for comparison.
In (b) the central fs transition is enlarged indicating a clear mismatch of the hf lines in com-
parison with the experiment. A clear discrepancy between the simulated and experimental
spectra indicates that such spin Hamiltonian parameters are unsuitable to describe the main
Mn2+ species in 2.
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Figure S4: Normalized room temperature X-band CW EPR spectra of manganese doped
MHyZnF compound kept under dry and afterwards under wet conditions. Note the much
stronger intensity of impurity Mn2+ species in the wet sample.
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Figure S5: (a) Two-pulse echo-detected field-sweep pulse EPR spectrum of 2 recorded at
25 K. (b) The corresponding first derivative spectrum. The arrow in (a) marks position at
which the ESEEM, ENDOR and relaxation time measurements were performed.
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Figure S6: Normalized temperature dependent X-band spectra of 2. Emphasis on (a) central
and (b) outer transitions. Simulation of the 324 K spectrum is also presented in (a).
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Figure S7: Temperature dependence of the axial zfs parameter of the impurity Mn2+ species
of 2. The values of D were estimated from the width of the fs. Error bars are smaller than
data points.

6



30 60 90 120
10

1

10
2

10
3

10
4

4000 8000 12000
10

1

10
2

10
3

10
4

1000 2000 3000
10

1

10
2

10
3

10
4

20 30 40 50
10

1

10
2

10
3

10
4

69 K69 K

Time (ns)t

127 K127 K

Time (ns)t

( )a ( )b

( )c ( )d

M
M

t
z

z
,0

−
(

) 
(a

rb
. 
u
.)

M
M

t
z

z
,0

−
(

) 
(a

rb
. 
u
.)

M
M

t
z

z
,0

−
(

) 
(a

rb
. 
u
.)

M
M

t
z

z
,0

−
(

) 
(a

rb
. 
u
.)

Square root of time ( ns)√t √

Square root of time ( ns)√t √

Figure S8: The kinetics of the longitudinal magnetization recovery of Mn2+ ions in 2. The
recovery is two-exponential at (a) 67 K, while it is single exponential at (b) 127 K. In (b)
and (d) the corresponding magnetization kinetics are scaled by

√
t.
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Figure S9: (a) Time and (b) frequency domain patterns of the two-pulse and three-pulse
ESEEM experiments of 2 obtained at 25 K and 325 mT. In (b) the proton Larmor frequency
and its double value are indicated by the arrows.
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Figure S10: Temperature dependence of gzz,2 of 3. Errors bars are approximately of the
same size as the data points.

IR and Raman data

Low-frequency temperature-dependent Raman spectra of 2 were measured using a Renishaw

InVia Raman spectrometer equipped with a confocal DM 2500 Leica optical microscope,

a thermoelectrically cooled CCD as a detector, Eclipse filter, a diode laser operating at

830 nm and a Linkam cryostat cell THMS600. Far-IR temperature-dependent IR spectra

were measured using a Biorad 575C FT-IR spectrometer and a helium-flow Oxford cryostat.

The spectral resolution of Raman and IR spectra was 2 cm−1.

Temperature-dependent Raman and IR spectra of 2 are presented in Figures S10 and S11.

Among the observed bands, only those observed near 440 and 270 cm−1 can be attributed

to internal modes, i.e., δ(CNN) and τ(CH3) modes. The remaining bands correspond to

the lattice modes, that is, translations of MHy+, HCOO– and Zn2+/Mn2+ cations as well as

librational motions of MHy+ and HCOO– cations. Lattice dynamic calculations performed

for related [(CH3)2NH2][Ni(HCOO)3] framework compound showed that the lattice modes

are strongly coupled.1 Nevertheless, we propose assignment of the lattice modes of 2 based

on some observations of Raman and IR spectra for related framework compounds.2–4 Firstly,

librational modes of the HCOO– ions give rise to strong Raman and weak IR bands whereas
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opposite behavior is observed for T’(HCOO–) modes. Secondly, librational and translational

modes of protonated amines are observed as weak bands, usually below 200 cm−1. Thirdly,

translations of divalent cations contribute significantly to the modes observed in the 200-

400 cm−1 range.

Temperature-dependent spectra show three major features upon cooling. Firstly, Raman

and IR bands remain broad down to 180 K but exhibit strong narrowing below 160 K.

Secondly, many bands split at low temperature into a few components and some additional

weak bands appear. Thirdly, all bands exhibit hardening with decrease of temperature in

the 300-180 K range and softening as Tc2 is approached from below. The narrowing and

splitting of bands confirms that 2 undergoes an order-disorder phase transition associated

with significant decrease of symmetry. Lack of any pronounced softening upon cooling is

also consistent with an order-disorder character of the phase transition.
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Figure S11: (a) Temperature-dependent Raman spectra of 2 in the 30-300 cm−1 range, (b)
temperature dependence of selected Raman wavenumbers and (c) temperature dependence
of FWHM for the 194 cm−1 (blue), 159 cm−1 (magenta), 140 cm−1 (green) and 111 cm−1

(red) Raman bands.
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Figure S12: (a) Temperature-dependent IR spectra of 2 in the 100-475 cm−1 range, (b)
temperature dependence of selected IR wavenumbers and (c) temperature dependence of
FWHM for the 297 cm−1 (magenta), 201 cm−1 (green), 164 cm−1 (blue) and 143 cm−1 (red)
bands.
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