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1. Material information of DC-TC and DC-ACR.

Table S1. Thermal, electrochemical and photo-physical properties of DC-TC and DC-ACR1

Compound Td/Tg (°C)a,b λabs (nm)c λPL (nm)c PLQY (%)c IP/EA (eV)d S1/T1/  (eV)e∆𝐸𝑆𝑇

DC-TC 413/85 389 518 22.1 -5.58/-2.99 2.75/2.61/0.14

DC-ACR 387/98 411 532 8.0 -5.32/-2.79 2.48/2.47/0.01
a decomposition temperature (5% weight loss); b glass transition temperature; c PLQY of 15 wt% investigated 

molecules doped into CBP in N2 atmosphere; d IP measured by cyclic voltammetry and EA calculated by IP minus 

optical gap approximated by absorption edge in toluene; e The values of the S1, T1 and  evaluated in toluene ∆𝐸𝑆𝑇 

(DC-ACR in n-hexane) at 77K, respectively. 



2. Surface morphology of the co-doped films.

(a) (b)

Figure S1. AFM images of 40-nm thin films of 2 wt% DBP:15 wt% DC-TC:CBP (a) and 2 wt% DBP:15 wt% DC-ACR:CBP 

(b) spin-coated on PEDOT:PSS coated ITO substrates. The films were prepared using chlorobenzene as the solvent 

and was then annealed at 100 °C for 10 min. The RMS roughness of 2 wt% DBP:15 wt% DC-TC:CBP and 2 wt% 

DBP:15 wt% DC-ACR:CBP films was 0.292 nm and 0.327 nm, respectively.



3. The PL characteristics and rate constants of TADF molecules.
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Figure S2. (a) The PL spectral of the co-doped films of 15 wt% DC-ACR:CBP (black line) and 2 wt% DBP:15 wt% DC-

ACR:CBP (red line) in the air at room temperature. Inset shows the PL spectrum in logarithm. (b) Time-resolved 

fluorescence decay curves for the co-doped films of 15 wt% DC-ACR:CBP and 2 wt% DBP:15 wt% DC-ACR:CBP in a 

N2 atmosphere. 

Table S2. The PL efficiencies and life-times of the PL decay curves of the co-doped films.

Films
Φ

(%)

Φ𝐹

(%)

Φ𝑇𝐴𝐷𝐹

(%)

𝜏𝑝

(ns)

𝜏𝑑

(μs)

15%DC-TC:CBP 22.1 12.3 9.7 16.72 14.29

2% DBP:15% DC-TC:CBP 69.2 55.1 14.1 5.37 1.34

15% DC-ACR:CBP 8.0 6.6 6.6 10.85 0.78

2% DBP:15% DC-ACR:CBP 62.1 48.7 13.4 5.56 0.37

With the measured PL efficiencies and decay times, the rate constants for the 15 wt% DC-TC:CBP and 15 wt% DC-

ACR:CBP co-doped films were calculated using the equations described as follow:2-6 
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where  is the transient decay time of the prompt component,  is the transient decay time of the delayed 𝜏𝑝 𝜏𝑑

component, and  and  are the prompt and delayed components of the PL quantum efficiency, Φ𝐹 Φ𝑇𝐴𝐷𝐹

respectively. 

For the DC-TC:CBP film,  can be described as𝑘𝑝,𝐷

𝑘𝑝,𝐷 = 𝑘𝑆
𝑟 + 𝑘𝐼𝑆𝐶 + 𝑘 𝑆

𝑛𝑟                                        (8)



For the DBP:DC-TC:CBP co-doped films,  can be described as𝑘𝑝,𝐷𝐴

𝑘𝑝,𝐷𝐴 = 𝑘𝑆
𝑟 + 𝑘𝐼𝑆𝐶 + 𝑘 𝑆

𝑛𝑟 + 𝑘𝐸𝑇                                   (9)

where  is the rate constant of the Förster resonance energy transfer.𝑘𝐸𝑇

Thus,  can be describe as7𝑘𝐸𝑇

𝑘𝐸𝑇 = 𝑘𝑝,𝐷𝐴 ‒ 𝑘𝑝,𝐷 = 1
𝜏𝐷𝐴

‒ 1
𝜏𝐷

                              (10)

where  is the prompt fluorescent lifetime of the film with DBP and  is the prompt fluorescent lifetime of the 𝜏𝐷𝐴 𝜏𝐷

film without DBP.



4. Device Fabrication and Measurements
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Figure S3. Normalized EL spectra of the devices using 2 wt% DBP:15 wt% DC-TC:CBP (a) or 2 wt% DBP:15 wt% DC-

ACR:CBP (b) as EML under the current density ranging from 1 mA/m2 to 100 mA/m2. 
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Figure S4. (a) Luminance-current density-voltage, (b) EQE-current density and (c) normalized EL spectra of the TAF-

OLEDs based on DBP as an emitter at various doping concentrations in a structure of ITO/PEDOT:PSS (40 nm)/x 

wt% DBP:15 wt% DC-TC:CBP (40 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (100 nm).
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Figure S5. (a) Luminance-current density-voltage, (b) EQE-current density and (c) normalized EL spectra of the TAF-

OLEDs based on DC-TC as an assistant dopant at various doping concentrations in a structure of ITO/PEDOT:PSS 

(40 nm)/2 wt% DBP:x wt% DC-TC:CBP (40 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (100 nm).
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Figure S6. (a) Luminance-current density-voltage, (b) EQE-current density and (c) normalized EL spectra of the TAF-

OLEDs based on DC-ACR as an assistant dopant at various doping concentrations in a structure of ITO/PEDOT:PSS 

(40 nm)/2 wt% DBP:x wt% DC-ACR:CBP (40 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (100 nm).



5. Exciton dynamics in DC-ACR based TAF-OLED
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Figure S7. Dependence of calculated singlet density (a) and triplet density (b) in a 15 wt% DC-ACR:CBP co-coped 

film as a function of time with ( , red lines) or without ( , black lines) Förster energy 𝑘𝐸𝑇 = 8.8 × 107 𝑠 ‒ 1 𝑘𝐸𝑇 = 0 𝑠 ‒ 1

transfer. The exciton density is calculated using Equation (5) and (6) with , 𝑘𝑆
𝑟 = 3.7 × 106 𝑠 ‒ 1

, ,  and . (c) The calculated 𝑘𝐼𝑆𝐶 = 4.6 × 107 𝑠 ‒ 1 𝑘𝑅𝐼𝑆𝐶 = 2.6 × 105 𝑠 ‒ 1 𝑘 𝑆
𝑛𝑟 = 4.3 × 107 𝑠 ‒ 1 𝑘 𝑇

𝑛𝑟 = 1.2 × 106 𝑠 ‒ 1

singlet and triplet exciton densities in a 15 wt% DC-ACR:CBP co-coped film under electrical excitation as a function 

of time with or without Förster energy transfer using Equation (8) and (9). 
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