# **Supporting Information**

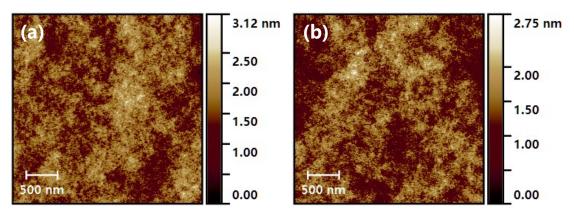
Efficient Solution-Processed Red All-Fluorescent Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence Materials as Assistant Hosts: Molecular Design Strategy and Exciton Dynamic Analysis

Dongjun Chen,† Xinyi Cai,† Xianglong Li, Zuozheng He, Chengsong Cai, Dongcheng Chen and Shi-Jian Su\*

State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China

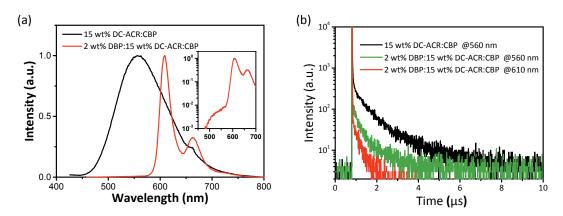
<sup>†</sup>These two authors contributed equally to this work.

\*Corresponding author. E-mail: mssjsu@scut.edu.cn


# 1. Material information of DC-TC and DC-ACR.

| Compound | T <sub>d</sub> /T <sub>g</sub> (°C) <sup>a,b</sup> | λ <sub>abs</sub> (nm) <sup>c</sup> | λ <sub>PL</sub> (nm) <sup>c</sup> | PLQY (%) <sup>c</sup> | IP/EA (eV) <sup>d</sup> | $S_1/T_1/\Delta E_{ST}$ (eV) <sup>e</sup> |
|----------|----------------------------------------------------|------------------------------------|-----------------------------------|-----------------------|-------------------------|-------------------------------------------|
| DC-TC    | 413/85                                             | 389                                | 518                               | 22.1                  | -5.58/-2.99             | 2.75/2.61/0.14                            |
| DC-ACR   | 387/98                                             | 411                                | 532                               | 8.0                   | -5.32/-2.79             | 2.48/2.47/0.01                            |

Table S1. Thermal, electrochemical and photo-physical properties of DC-TC and DC-ACR<sup>1</sup>


<sup>a</sup> decomposition temperature (5% weight loss); <sup>b</sup> glass transition temperature; <sup>c</sup> PLQY of 15 wt% investigated molecules doped into CBP in N<sub>2</sub> atmosphere; <sup>d</sup> IP measured by cyclic voltammetry and EA calculated by IP minus optical gap approximated by absorption edge in toluene; <sup>e</sup> The values of the S<sub>1</sub>, T<sub>1</sub> and  $\Delta E_{ST}$  evaluated in toluene (DC-ACR in n-hexane) at 77K, respectively.

# 2. Surface morphology of the co-doped films.



**Figure S1.** AFM images of 40-nm thin films of 2 wt% DBP:15 wt% DC-TC:CBP (a) and 2 wt% DBP:15 wt% DC-ACR:CBP (b) spin-coated on PEDOT:PSS coated ITO substrates. The films were prepared using chlorobenzene as the solvent and was then annealed at 100 °C for 10 min. The RMS roughness of 2 wt% DBP:15 wt% DC-TC:CBP and 2 wt% DBP:15 wt% DC-ACR:CBP films was 0.292 nm and 0.327 nm, respectively.

#### 3. The PL characteristics and rate constants of TADF molecules.



**Figure S2.** (a) The PL spectral of the co-doped films of 15 wt% DC-ACR:CBP (black line) and 2 wt% DBP:15 wt% DC-ACR:CBP (red line) in the air at room temperature. Inset shows the PL spectrum in logarithm. (b) Time-resolved fluorescence decay curves for the co-doped films of 15 wt% DC-ACR:CBP and 2 wt% DBP:15 wt% DC-ACR:CBP in a  $N_2$  atmosphere.

| Films                 | Φ    | $\Phi_F$ | $\Phi_{TADF}$ | $	au_p$ | $	au_d$ |
|-----------------------|------|----------|---------------|---------|---------|
| FIIIIS                | (%)  | (%)      | (%)           | (ns)    | (μs)    |
| 15%DC-TC:CBP          | 22.1 | 12.3     | 9.7           | 16.72   | 14.29   |
| 2% DBP:15% DC-TC:CBP  | 69.2 | 55.1     | 14.1          | 5.37    | 1.34    |
| 15% DC-ACR:CBP        | 8.0  | 6.6      | 6.6           | 10.85   | 0.78    |
| 2% DBP:15% DC-ACR:CBP | 62.1 | 48.7     | 13.4          | 5.56    | 0.37    |

Table S2. The PL efficiencies and life-times of the PL decay curves of the co-doped films.

With the measured PL efficiencies and decay times, the rate constants for the 15 wt% DC-TC:CBP and 15 wt% DC-ACR:CBP co-doped films were calculated using the equations described as follow:<sup>2-6</sup>

$$k_{p} = \frac{1}{\tau_{p}}$$
(1)  

$$k_{d} = \frac{1}{\tau_{d}}$$
(2)  

$$k_{r}^{S} = \Phi_{F}k_{p}$$
(3)  

$$k_{nr}^{S} = \left(\frac{\Phi_{F}}{\Phi} - \Phi_{F}\right)k_{p}$$
(4)  

$$k_{nr}^{T} = k_{d} - \Phi_{F}k_{RISC}$$
(5)  

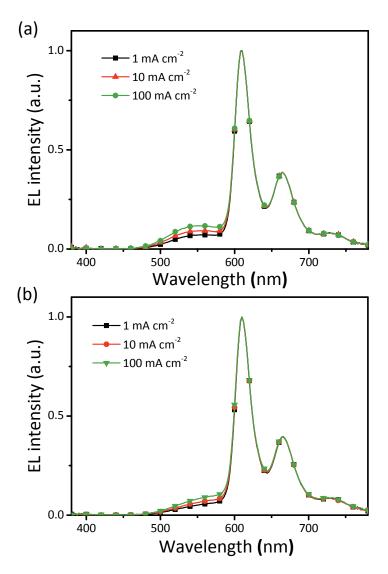
$$k_{ISC} = \left(1 - \frac{\Phi_{F}}{\Phi}\right)k_{p}$$
(6)  

$$k_{RISC} = \frac{k_{p}k_{d}\Phi_{TADF}}{k_{ISC} \Phi_{F}}$$
(7)

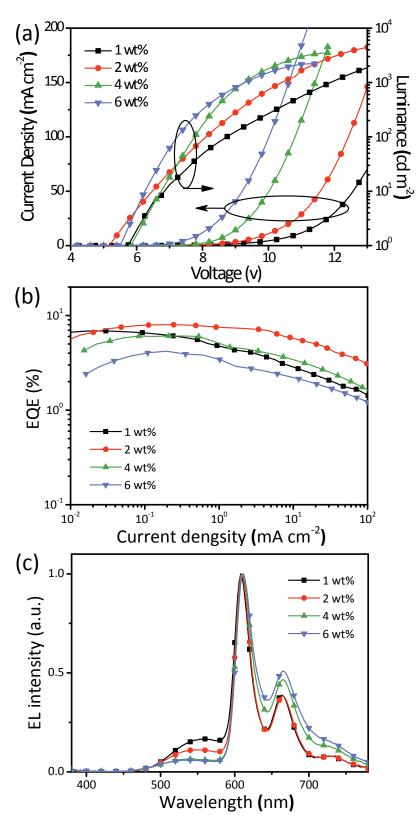
where  $\tau_p$  is the transient decay time of the prompt component,  $\tau_d$  is the transient decay time of the delayed component, and  $\Phi_F$  and  $\Phi_{TADF}$  are the prompt and delayed components of the PL quantum efficiency, respectively.

For the DC-TC:CBP film, 
$${}^{K_{p,D}}$$
 can be described as  
 $k_{p,D} = k_r^S + k_{ISC} + k_{nr}^S$  (8)

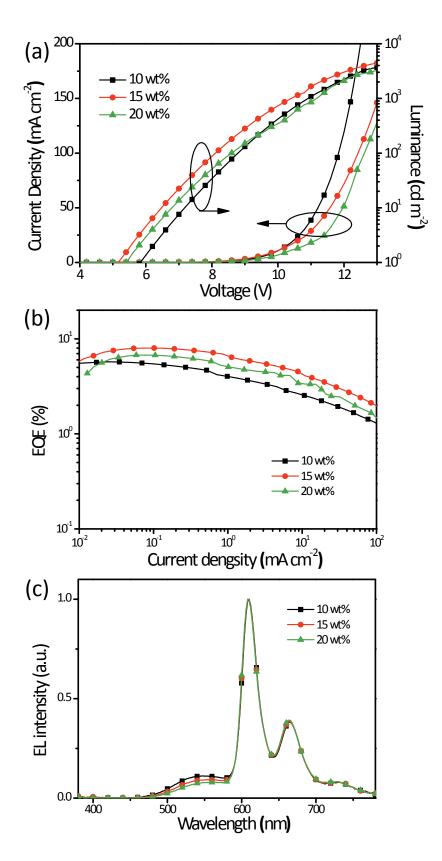
For the DBP:DC-TC:CBP co-doped films,  $k_{p,DA}$  can be described as


$$k_{p,DA} = k_r^S + k_{ISC} + k_{nr}^S + k_{ET}$$
(9)

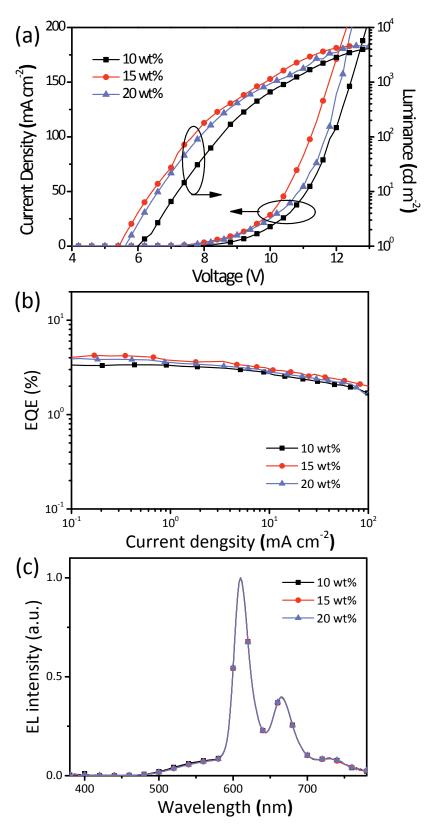
where  $k_{ET}$  is the rate constant of the Förster resonance energy transfer. Thus,  $k_{\rm ET}$  can be describe as<sup>7</sup>


$$k_{ET} = k_{p,DA} - k_{p,D} = \frac{1}{\tau_{DA}} - \frac{1}{\tau_D}$$
(10)

where  $au_{DA}$  is the prompt fluorescent lifetime of the film with DBP and  $au_D$  is the prompt fluorescent lifetime of the film without DBP.

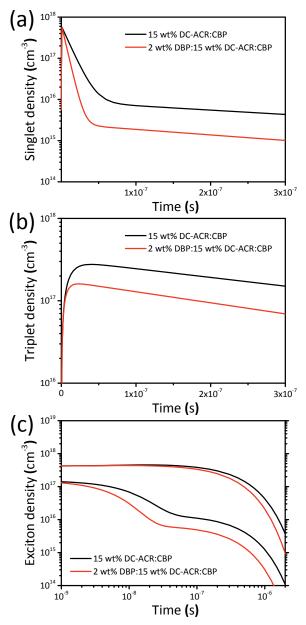

# 4. Device Fabrication and Measurements




**Figure S3.** Normalized EL spectra of the devices using 2 wt% DBP:15 wt% DC-TC:CBP (a) or 2 wt% DBP:15 wt% DC-ACR:CBP (b) as EML under the current density ranging from 1 mA/m<sup>2</sup> to 100 mA/m<sup>2</sup>.



**Figure S4.** (a) Luminance-current density-voltage, (b) EQE-current density and (c) normalized EL spectra of the TAF-OLEDs based on DBP as an emitter at various doping concentrations in a structure of ITO/PEDOT:PSS (40 nm)/x wt% DBP:15 wt% DC-TC:CBP (40 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (100 nm).




**Figure S5.** (a) Luminance-current density-voltage, (b) EQE-current density and (c) normalized EL spectra of the TAF-OLEDs based on DC-TC as an assistant dopant at various doping concentrations in a structure of ITO/PEDOT:PSS (40 nm)/2 wt% DBP:x wt% DC-TC:CBP (40 nm)/TmPyPB (55 nm)/LiF (1 nm)/AI (100 nm).



**Figure S6.** (a) Luminance-current density-voltage, (b) EQE-current density and (c) normalized EL spectra of the TAF-OLEDs based on DC-ACR as an assistant dopant at various doping concentrations in a structure of ITO/PEDOT:PSS (40 nm)/2 wt% DBP:x wt% DC-ACR:CBP (40 nm)/TmPyPB (55 nm)/LiF (1 nm)/AI (100 nm).

# 5. Exciton dynamics in DC-ACR based TAF-OLED



**Figure S7.** Dependence of calculated singlet density (a) and triplet density (b) in a 15 wt% DC-ACR:CBP co-coped film as a function of time with ( $k_{ET} = 8.8 \times 10^7 s^{-1}$ , red lines) or without ( $k_{ET} = 0 s^{-1}$ , black lines) Förster energy transfer. The exciton density is calculated using Equation (5) and (6) with  $k_r^S = 3.7 \times 10^6 s^{-1}$ ,  $k_{ISC} = 4.6 \times 10^7 s^{-1}$ ,  $k_{RISC} = 2.6 \times 10^5 s^{-1}$ ,  $k_{nr}^S = 4.3 \times 10^7 s^{-1}$  and  $k_{nr}^T = 1.2 \times 10^6 s^{-1}$ . (c) The calculated singlet and triplet exciton densities in a 15 wt% DC-ACR:CBP co-coped film under electrical excitation as a function of time with or without Förster energy transfer using Equation (8) and (9).

### Reference

- 1. X. Cai, X. Li, G. Xie, Z. He, K. Gao, K. Liu, D. Chen, Y. Cao and S.-J. Su, *Chem. Sci.*, 2016, **7**, 4264-4275.
- Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang and W. Huang, *Adv. Mater.*, 2014, 26, 7931-7958.
- 3. Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T. Shibata and C. Adachi, *J. Am. Chem. Soc.*, 2014, **136**, 18070-18081.
- 4. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, *Nature*, 2012, **492**, 234-238.
- 5. K. Goushi, K. Yoshida, K. Sato and C. Adachi, *Nat. Phot.*, 2012, **6**, 253-258.
- 6. H. Tanaka, K. Shizu, J. Lee and C. Adachi, J. Phys. Chem. C, 2015, **119**, 2948-2955.
- 7. C. Li, L. Duan, D. Zhang and Y. Qiu, ACS Appl. Mater. Interfaces, 2015, **7**, 15154-15159.