Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

The experimental atomic coordinate given below are used to analysis the

ferroelectric polarization.

Space group name P 1 Lattice parameters a b c alpha beta gamma 8.55340 8.55340 11.16200 90.0000 90.0000 120.0000

			Х	У	Z	Occ.	В	Site	Sym.
1	Ge	Ge1	0.00000	0.00000	0.46830	1.000	1.000	1a	1
2	Ge	Ge2	0.66667	0.33333	0.80163	1.000	1.000	1a	1
3	Ge	Ge3	0.33333	0.66667	0.13497	1.000	1.000	1a	1
4	С	C4	0.00000	0.00000	0.00200	1.000	1.000	1a	1
5	С	C5	0.66667	0.33333	0.33533	1.000	1.000	1a	1
6	С	C6	0.33333	0.66667	0.66867	1.000	1.000	1a	1
7	Ν	N7	0.00000	0.00000	0.87900	1.000	1.000	1a	1
8	Ν	N8	0.66667	0.33333	0.21233	1.000	1.000	1a	1
9	Ν	N 9	0.33333	0.66667	0.54567	1.000	1.000	1a	1
10	I	I10	0.50485	0.49515	0.92640	1.000	1.000	1a	1
11	I	I11	0.17152	0.82848	0.25973	1.000	1.000	1a	1
12	I	I12	0.83818	0.16182	0.59307	1.000	1.000	1a	1
13	I	I13	0.50485	0.00970	0.92640	1.000	1.000	1a	1
14	I	I14	0.17152	0.34303	0.25973	1.000	1.000	1a	1
15	I	I15	0.83818	0.67637	0.59307	1.000	1.000	1a	1
16	I	I16	0.99030	0.49515	0.92640	1.000	1.000	1a	1
17	I	I17	0.65697	0.82848	0.25973	1.000	1.000	1a	1
18	I	I18	0.32363	0.16182	0.59307	1.000	1.000	1a	1
19	Н	H19	0.40397	0.80795	0.51252	1.000	1.000	1a	1
20	Н	H20	0.19205	0.59603	0.51252	1.000	1.000	1a	1
21	Н	H21	0.37089	0.56407	0.70271	1.000	1.000	1a	1
22	Н	H22	0.19318	0.62911	0.70271	1.000	1.000	1a	1
23	Н	Н23	0.43593	0.80682	0.70271	1.000	1.000	1a	1
24	Н	H24	0.42795	0.61661	0.51361	1.000	1.000	1a	1
25	Н	H25	0.59412	0.18824	0.36938	1.000	1.000	1a	1
26	Н	H26	0.59412	0.40588	0.36938	1.000	1.000	1a	1
27	Н	H27	0.81176	0.40588	0.36938	1.000	1.000	1a	1
28	Н	H28	0.70323	0.23343	0.17919	1.000	1.000	1a	1
29	Н	H29	0.76657	0.46980	0.17919	1.000	1.000	1a	1
30	Н	Н30	0.51356	0.28393	0.15348	1.000	1.000	1a	1

3	1 H	H31	0.02611	0.11554	0.81992	1.000	1.000	1a	1
3	2 Н	Н32	0.87427	0.86867	0.85460	1.000	1.000	1a	1
3	3 Н	Н33	0.09650	0.94083	0.85239	1.000	1.000	1a	1
3	4 H	Н34	0.94870	0.85297	0.02692	1.000	1.000	la	1
3	5 Н	Н35	0.94870	0.06320	0.07009	1.000	1.000	1a	1
3	6 Н	Н36	0.15390	0.07695	0.00200	1.000	1.000	1a	1

Analysis the ferroelectric polarization via classic point charge model method

Firstly, we expand the primitive cell to the $3 \times 3 \times 3$ super cell, then cut off one unit cell given below to predict its ferroelectric polarization via the point charge model method. The unit cell's atomic coordinates that we choose are listed as follows:

Figure S1: The primitive cell of MAGeI3.

	Х	У	Z		Х	У	Z
I1	0.58576	0.41424	0.62987	Gel	0.5	0.5	0.73415
I2	0.58576	0.67152	0.62987	Ge2	0.16667	0.3334	0.56748
IЗ	0.75242	0.74757	0.46320	Ge3	0.33334	0.66667	0.40082
I4	0.75242	0.74757	0.46320	Ge4	0.66667	0.83334	0.56748
Ι5	0.75242	0.50485	0.46320	Ge5	0.66667	0.33334	0.56748
I6	0.32849	0.41424	0.62987	Ge6	0.33334	0.16667	0.40082
I7	0.49515	0.74757	0.46320	Ge7	0.5	0.5	0.23415
I8	0.66182	0.58091	0.29635	Ge8	0.83334	0.66667	0.40082
Ι9	0.25242	0.50485	0.46320				
I10	0.41909	0.58091	0.29653				
I11	0.41909	0.33819	0.29653				
I12	0.25242	0.24757	0.46320				
	Х	Y	Z				
С	0.5	0.5	0.50100				
Ν	0.5	0.5	0.43950				

The equivalent charge center of Ge²⁺ and I⁻ ions can be calculated by using the

formula:
$$X_C = \frac{\sum q_i x_i}{\sum q_i}$$
, $Y_C = \frac{\sum q_i y_i}{\sum q_i}$, $Z_C = \frac{\sum q_i z_i}{\sum q_i}$, x_i , y_i and z_i refer to the atomic

coordinates. The q_i refers to the charge. For Ge ions, $q_i = +2e$, for I ions, $q_i = -e$. The calculated atomic coordinates of equivalent charge center of I⁻ ions are:

Also the calculated atomic coordinates of equivalent charge center of Ge²⁺ ions are:

$$(0.501665 \quad 0.5000 \quad 0.48415)$$

The atomic coordinates of positive charge center of MA cation are (0.5 0.5 0.477) due to the most positive charge localized on the NH3 group. Thus, the calculated relative position r between Ge²⁺ and I⁻ ions is mainly along the c axis, equaling to 0.7Å. The displacement r between MA cation and I⁻ ions is 0.3103Å along the c axis. The volume of the unit cell is V=236 Å³. Via point charge model method, $P_{Ge-I} = \frac{qr}{V} =$

$$\frac{2e \times 0.7 \text{ Å}}{236 \text{ Å}^3} = 10.37 \,\mu c \,/\, cm^3. \quad p_{MA-I} = \frac{qr}{V} = \frac{e \times 0.3103 \text{ Å}}{236 \text{ Å}^3} = 2.1 \,\mu c \,/\, cm^3. \text{ Here } e = 1.6 \times 10^{-3}$$

¹⁹C. The calculated $p_{MA-I} = 2.1 \,\mu c / cm^3$ via classic point charge model is accord with the results $2.4 \,\mu c / cm^3$ via berry phase method. Although the P_{Ge-I} via point charge model is less than the results via berry phase method, but two methods all predict a huge ferroelectric polarization along the c axis.

Analysis spin-orbit coupling(SOC) effect

The material of CH₃NH₃GeI₃ regarded as solar cell candidates with high performance won't be affected by spin-orbit coupling(SOC) effects. This is because that the Ge(No.32) element at conduction band bottom(CBM) is not so heavy compared with the traditional heavy metal, which locate after No. 53 in periodic table. Only the atomic number greater than No.53 such as Pb, Bi, Po can be affected by SOC effects markedly. Based on the above consideration, the SOC effects will not be considered in perovskite CH₃NH₃GeI₃.

Elastic constants tensor calculation

We employed more tense $12 \times 12 \times 10$ k-meshes to calculate the elastic constants tensor C_{ii} by using the optimized structure as the C_{ii} is sensitive to high-precision energy ΔE take a derivative with respect to lattice dilation Δl . The calculated C_{ii} is sixth-order tensor listed below:

Direction	XX	YY	ZZ	XY	YZ	ZX
XX	60.9849	152.3917	38.4627	20.6224	63.2060	-21.3717
YY	152.3917	114.6264	114.6710	-60.3804	-140.9847	-21.5302
ZZ	38.4627	114.6710	150.4557	11.8469	34.5352	-19.7120
XY	20.6224	-60.3804	11.8469	14.1335	-24.2668	9.3426
YZ	63.2060	-140.9847	34.5352	-24.2668	-14.3295	-18.9308
ZX	-21.3717	-21.5302	-19.7120	9.3426	-18.9308	-50.1378

Deformation potential calculation

The deformation potential constant E^i of the VBM for hole or CBM for electron along [1 0 0], [0 1 0] and [0 0 1] direction are defined as energy change ΔE as the function of deformation of lattice $\Delta l/l_0$. Here $\Delta l/l_0$ are expressed as: 0.990 l_0 , 0.995

 $l_0, 1.000 l_0, 1.005 l_0$ and $1.010 l_0$. We only listed calculated deformation potential constant E^i as below due to highest carrier mobility along [0 0 1] direction.

Appendix:

The code for calculating the ferreoelectric polarization

```
parameter (natom=20)
```

double

precision

ionw(natom,3),ionw0(natom,3),iondw(natom,3),iondw0(natom,3),polax,polay,polaz

double precision x(natom,3),x2(natom,3),xx(natom,3),xx2(natom,3)

double precision pol(3),pold(3)

double precision polat(3),polae(3),polai(3),polai0(3)

double precision polatc(3),polaec(3),polaic(3),polaic0(3)

double precision b2(3,3),c2(3,3),IS(4),JS(4)

character(2) ch

double precision A1(3,3),a2(3,3),latticea,latticeb,latticec,alfa,beta,seta,volum

natom1=3; natom2=3; natom3=3; natom4=9; natom5=18

pol(1)=0.6136; pol(2)= -0.37472; pol(3)= 5.85605

!!!!!!!!!!!! read cell file "cell"

open(10,file='CONTCAR')

open(11,file='POSCAR')

read(10,*)

read(10,*)cons2

READ(11,*)

READ(11,*)CONS1

do i=1,3

read(10,*)(a2(i,j),j=1,3)

READ(11,*)(A1(I,J),J=1,3)

enddo

read(10,*)

read(10,*)

read(10,*)

read(11,*)

read(11,*)

read(11,*)

do i=1,natom

read(10,*)(xx(i,j),j=1,3)

read(11,*)(x(i,j),j=1,3)

enddo

close(10)

close(11)

A1=A1*CONS1

a2=a2*cons2

latticea = sqrt(a2(1,1)*a2(1,1)+a2(1,2)*a2(1,2)+a2(1,3)*a2(1,3)) latticeb = sqrt(a2(2,1)*a2(2,1)+a2(2,2)*a2(2,2)+a2(2,3)*a2(2,3)) latticec = sqrt(a2(3,1)*a2(3,1)+a2(3,2)*a2(3,2)+a2(3,3)*a2(3,3)) alfa = acosd((a2(2,1)*a2(3,1)+a2(2,2)*a2(3,2)+a2(2,3)*a2(3,3))/latticeb/latticec) beta = acosd((a2(1,1)*a2(3,1)+a2(1,2)*a2(3,2)+a2(1,3)*a2(3,3))/latticea/latticec) seta = acosd((a2(1,1)*a2(2,1)+a2(1,2)*a2(2,2)+a2(1,3)*a2(2,3))/latticea/latticeb) volum = latticea*latticeb*latticec*dsqrt(1-cosd(alfa)**2-cosd(beta)**2-

cosd(seta)**2 &

 $+2*\cos(alfa)*\cos(beta)*\cos(seta))$

!!!!!!!!!! ions location polariztion

do i=1,natom

if (i<=natom1) then

iondw0(i,:)=(x(i,:))*val1

iondw(i,:)=(xx(i,:))*val1

```
elseif (i<=natom1+natom2) then
```

iondw0(i,:)=(x(i,:))*val2

iondw(i,:)=(xx(i,:))*val2

elseif (i<=natom1+natom2+natom3) then

iondw0(i,:)=(x(i,:))*val3

iondw(i,:)=(xx(i,:))*val3

elseif (i<=natom1+natom2+natom3+natom4) then

iondw0(i,:)=(x(i,:))*val4

iondw(i,:)=(xx(i,:))*val4

elseif (i<=natom1+natom2+natom3+natom4+natom5) then

iondw0(i,:)=(x(i,:))*val5

iondw(i,:)=(xx(i,:))*val5

endif

enddo

do i=1,natom

```
polai0(:)=polai0(:)+iondw0(i,:)
```

```
polai(:)=polai(:)+iondw(i,:)
```

enddo

!!!!!!!!!!!!!!! transvert cartesian to fractional coordinates

b2=a2

call BRINV(b2,3,L,IS,JS)

do j=1,3

do k=1,3

polae(j)=polae(j)+pol(k)*b2(k,j)

enddo

enddo

! polat(:)=dmod(-polae(:)+polai(:)-polai0(:),1.0)

- ! write(*,*)-polae(:)
- ! write(*,*)polai(:)

polat(:)=dmod(-polae(:)+polai(:),1.0)

polai(:)=dmod(polai(:),1.0)

polat(1)=polat(1)-1.0

polat(2)=polat(2)-1.0

polat(3)=polat(3)-1.0

write(*,'(a,3f10.3)')"e+ion fractional",(polat(i),i=1,3)

```
polatc(:)=0.0
do j=1,3
do k=1,3
polatc(j)=polatc(j)+polat(k)*a2(k,j)
polaec(j)=polaec(j)+polae(k)*a2(k,j)
polaic(j)=polaic(j)+polai(k)*a2(k,j)
```

enddo

enddo

polatc(:)=polatc(:)*16.0/volum
polaec(:)=polaec(:)*16.0/volum
polaic(:)=polaic(:)*16.0/volum

write(*,'(a,3f10.4)')"p[elc]=",(-polaec(j),j=1,3)
write(*,'(a,3f10.4)')"p[ion]=",(polaic(j),j=1,3)
write(*,'(a,3f10.4,a)')"P[e+i]",(polatc(j),j=1,3)," C/m^2"

open(11,file='pol.dat')

write(11,'(3f10.5)')(polatc(j),j=1,3)

close(1)

end

SUBROUTINE BRINV(A,N,L,IS,JS)

DIMENSION A(N,N),IS(N),JS(N)

DOUBLE PRECISION A,T,D

L=1

DO 100 K=1,N

D=0.0

DO 10 I=K,N

DO 10 J=K,N

IF (ABS(A(I,J)).GT.D) THEN

D=ABS(A(I,J))

IS(K)=I

JS(K)=J

END IF

10 CONTINUE

IF (D+1.0.EQ.1.0) THEN

L=0

WRITE(*,20)

RETURN

END IF

20 FORMAT(1X,'ERR**NOT INV')

DO 30 J=1,N

T=A(K,J)

A(K,J)=A(IS(K),J)

A(IS(K),J)=T

30 CONTINUE

DO 40 I=1,N

T=A(I,K)

A(I,K)=A(I,JS(K))

A(I,JS(K))=T

40 CONTINUE

A(K,K)=1/A(K,K)

DO 50 J=1,N

IF (J.NE.K) THEN

A(K,J)=A(K,J)*A(K,K)

END IF

50 CONTINUE

DO 70 I=1,N

IF (I.NE.K) THEN

DO 60 J=1,N

IF (J.NE.K) THEN

A(I,J)=A(I,J)-A(I,K)*A(K,J)

END IF

60 CONTINUE

END IF

70 CONTINUE

DO 80 I=1,N

IF (I.NE.K) THEN

$$A(I,K) = -A(I,K) * A(K,K)$$

END IF

- 80 CONTINUE
- 100 CONTINUE
 - DO 130 K=N,1,-1
 - DO 110 J=1,N
 - T=A(K,J)
 - A(K,J)=A(JS(K),J)

A(JS(K),J)=T

110 CONTINUE

DO 120 I=1,N

T=A(I,K)

A(I,K)=A(I,IS(K))

A(I,IS(K))=T

120 CONTINUE

130 CONTINUE

RETURN

END