Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Nanocomposite of CsPbBr₃ Perovskite Nanocrystals in an

Ammonium Bromide Frame with Enhanced Stability

Sunqi Lou,^a Tongtong Xuan,^{*b} Caiyan Yu,^a Mengmeng Cao,^a Chao Xia,^a Jing Wang,^{*b}

and Huili Li*a

^aEngineering Research Center for Nanophotonics & Advanced Instrument, Ministry

of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China.

^bMinistry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry,

State Key Laboratory of Optoelectronic Materials and Technologies, School of

Chemistry, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

**Corresponding author:* Prof. Huili Li *E-mail:*hlli@phy.ecnu.edu.cn; *Tel:* +86-21-62235465; *Fax:* +86-21-62234321.

Prof. Jing Wang *E-mail:* ceswj@mail.sysu.edu.cn; Tel: +86-02-84112112.

Dr. Tongtong Xuan *E-mail*: xuantt@mail.sysu.edu.cn; Tel: +86-20-84110189.

Experimental Section

1.Chemicals

Lead chloride (PbCl₂, 99.999%) oleic acid (OA, 90%), 1-octadecene (ODE, 90%), oleylamine (OAm, 80-90%), trioctylphosphine (TOP, 90%) were purchased from Alfa Aesar. Cesium carbonate (Cs₂CO₃, 99.9%) and lead bromide (PbBr₂, 98%) were purchased from Aldrich. Ammonium chloride (NH₄Cl,99.0%), Ammonium bromide (NH₄Br, 99.0%), Ammonium iodide (NH₄I, 99.0%), Sodium chloride (NaCl, 99.0%), Lead iodide (PbI₂, 99.99%) and toluene (analytical regent) were purchased from Sinopharm Chemical Reagent Co., Ltd. All reagents were used as received without further experimental purification.

2. Preparation of Cs-oleate

 Cs_2CO_3 (0.814 g), OA (2.5 mL) and ODE (40 mL) were added into a 100 mL 3neck flask, dried for 1h at 120°C and then heated under N₂ to 150°C to ensure full solubility of Cs_2CO_3 . Since Cs-oleate precipitates out of ODE at room-temperature, it must be preheated to 100 °C before injection.

3. Synthesis of CsPbX₃ (X=Cl, Br, I) NCs

ODE (5 mL), OA (1.5 mL for PbCl₂ and 0.5 mL for PbBr₂), OAm (1.5 mL for PbCl₂, and 0.5 mL for PbBr₂) and 0.188 mmol of PbX₂ were loaded into a 50 mL 3neck flask and dried under vacuum at 120 °C for 1h. After degassing, filling the N₂ and keeping the temperature at 120°C for 2h. A hot syringe was used to swiftly inject 0.4 mL of the Cs precursor into the lead halide precursor solution at elevated temperatures (140°C for CsPbBr₃ and CsPbI₃, 180°C for CsPbCl₃) and a certain period of time later the reaction mixture was cooled down by an ice water bath. For obtaining CsPbCl₃ NCs, a higher temperature of 180 °C and 1 mL of trioctylphosphine are necessary to solubilize PbCl₂. After reaction, the aggregated NCs were separated by centrifugation. After centrifugation, the supernatant was discarded and the precipitate was redisposed in dried 6 mL toluene.

4. Synthesis of CsPbBr₃-NH₄Br nanocomposites

CsPbBr₃-NH₄Br (loading of 0.062 mmol of CsPbX₃ (X=Cl, Br) NCs to 1 g of NH₄Br in theory) was synthesized via an anion exchange procedure and physical

absorption. In order to differentiate, the products were named as CPBr-NB-AE and CPBr-NB-PA, respectively. In detail, 4 mL dry toluene was poured into a reagent bottle containing 2 mL CsPbX₃ NCs solution, and then 1 g NH₄Br was added in the ambient condition for an anion exchange or physical absorption. After rest for a period of time (24h for the CPBr-NB-PA), the precipitates were separate collected through centrifugation at 1000 rpm for 3 min, and the CPBr-NB nanocomposites were obtained by vacuum drying. For the water stability tests, the content of the CsPbBr₃ NCs in the CPBr-NB-AE nanocomposites was kept nearly same with the pure CsPbBr₃ powder. The concentration of the CsPbBr₃ is 6.3×10^{-3} mmol/mL for CPBr-NB-AE and 6.0×10^{-3} mmol/mL for CsPbBr₃, respectively. Both samples were dispersed in 5 mL deionized water during the test.

5. Packaging of White LEDs

CPBr-NB-AE nanocomposites and red $K_2SiF_6:Mn^{4+}$ phosphor were mixed with silicone resin B and silicone resin A (A: B = 1: 2; wt%). After bubbles were removed, the mixture was dropped onto a blue chip and then thermally cured for 2 h at 150 °C in an oven. Followed previously step, we can fabricate white LEDs for optical properties test. The optical properties of the fabricated devices were determined using an integrating sphere with an analyzer system (Ocean Optics Co., Ltd.).

6. Characterization

The absorption and transmittance spectra of as-prepared NCs and nanocomposites were measured by using a UV/vis spectrophotometer (Hitachi U-3900). Photoluminescence (PL) spectra and external quantum yield (QY) were measured by using a fluorescence spectrophotometer (Horiba Jobin Yvon, FluoroMax-4) containing an integrating sphere unit (Horiba Jobin Yvon, F3029). For the temperature-dependent photoluminescence measurement, the sample was bedded in a sample cavity and heated to the desired temperature by a high-temperature fluorescence controller (Tianjin Orient KOJI Co., Ltd., TAP-02). X-ray diffractometer (XRD), using Cu K α radiation (λ = 1.5405Å) at a voltage of 40 k and a current of 40 mA with 20 scanning mode. The surface morphology, structure, composition and energy dispersive spectrometer (EDS) of the samples were characterized by Feld-emission scanning electron microscopy (FESEM, Hitachi S-4800). The morphology and particle size of samples were observed by a JEM-2100 high-resolution transmission electron microscope (HRTEM, JEOL, Japan). X-ray photoelectron spectroscopy (XPS) measurements were carried out on a multifunctional imaging electron spectrometer (Thermo ESCALAB 250XI). And fourier transformation infra-red (FTIR) spectra were taken by using a fourier transformation infra-red spectrometer (Bruker, EQUINOX 55). respectively.

Table S1. The photoluminescent quantum yield of the CPBr-NB-AE nanocomposites.

time	0.5h	3h	6h	12h	24h	48 h
PL quantum yield	41.42	43.00	61.89	62.13	64.21	54.88
(%)						

Figure. S1 PL spectra of the exchanged CsPbX₃ NCs by NH_4X (X = Cl,Br,I)

Figure. S2 elemental mappings of CPBr-NB-AE.

Figure. S3 XPS image of the CPBr-NB-AE.

Figure. S4 FTIR spectra of the NH₄Br, CPBr-NB-AE, CPBr-NB-PA and NH₄Cl (the red dotted line indict the vibrations of N-Cl and the blank dotted line is N-Br).

Figure. S5 TEM images of monodisperse perovskite NCs: (a, b) CsPbBr₃ NCs; (c, d) CsPbBr₃ NCs; (e, f) CsPbCl₃ NCs; (g, h) bulk CsPbBr₃ which got from the heat treat CPBr-NB-AE nanocomposites. The insets in right corner of the picture (d, h) show the diffraction spot of the CsPbBr₃ NCs and bulk CsPbBr₃.

Figure. S6 XRD of the patterns of bulk CsPbBr₃ which got from the heat treat CPBr-NB-AE nanocomposites.

Figure. S7 transmittance spectra the CPBr-NB-AE nanocomposites and NH₄Br.

Figure. S8 Electronic state structures of energy band of the (a) CsPbCl₃, (b) CsPbBr₃ (c) NH₄Br and (d) the flat-band energy level diagram of the CsPbBr₃ NCs and NH₄Br.

Figure. S9 PL spectra of the CPBr-NB-AE nanocomposites under the ambient condition maintaining for different time, which the humidity was \sim 45% and the temperature was \sim 30°C.