Electronic Supplementary Information

Novel achiral four-ring bent-shaped nematic liquid crystals with

trifluoromethyl and methyl substituents in central molecular core: Unusual

 large Kerr constant in blue phase III of nematic-chiral dopant mixture.R. K.Khan ${ }^{1}$, S.Turlapati², N. V. S. Rao ${ }^{2}$, R. Pratibha ${ }^{3}$, W. Drzewinski ${ }^{4}$, R. Dabrowski ${ }^{4}$ and S. Ghosh ${ }^{1 *}$.

${ }^{1}$ Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, India, email: sharmisthaghos@gmail.com;
${ }^{2}$ Chemistry Department, Assam University, Silchar 788011, India.
${ }^{3}$ Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
${ }^{4}$ Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland

Procedure for the Synthesis of the compounds:

4-[N-(4'-(n-pentyloxy-2-hydroxybenzylidene)amino] 3-trifluoromethylphenyl-4yl 3-[N-(4'-n-pentyloxy-2-hydroxybenzylidene)aminol-2-methylbenzoate, 5-3CF $\mathbf{3}^{-2 M}$-5:
3-[N-(4'-n-pentyloxy-2-hydroxybenzylidene)amino]- 2-methylbenzoicacid ($0.68 \mathrm{~g} ; 2 \mathrm{mmol}$) was dissolved in dichloromethane, stirred on a magnetic stirrer and a catalytic amount of $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylaminopyridine (DMAP) was added to the solution. To the stirred reaction mixture a solution 4-[N-(4-n-pentyloxy-2-hydroxybenzylidene)amino]-3-trifluoromethyl phenol $(0.73 \mathrm{~g}, 2 \mathrm{mmol})$ was slowly added. To the resulting solution an equimolar quantity of dicyclohexylcarbodiimide (DCC) $(0.412 \mathrm{~g}, 2 \mathrm{mmol})$ was added and stirred for 48 hours. After the completion of stirring, the dicyclohexylurea thus formed in the reaction mixture was
filtered off. Evaporation of the solvent gave the crude product which was then recrystallized several times from ethanol to obtain the pure product 4-[N-(4'-(n-pentyloxy-2hydroxybenzylidene)amino] 3-trifluoromethylphenyl-4yl 3-[N-(4'-n-pentyloxy-2-hydroxybenzylidene)amino]-2-methylbenzoate, $\mathbf{5 - 3 C F} \mathbf{3} \mathbf{- 2 M - 5}$, as yellow solid. Yield: 0.96 g , (70\%); IR $v_{\text {max }}$ in $\mathrm{cm}^{-1}: 1619$ ($v_{\mathrm{CH}=\mathrm{N}}$, imine); 1759 ($v_{\mathrm{C}=\mathrm{O}}$, ester), $3070\left(v_{\mathrm{O}-\mathrm{H}}, \mathrm{H}\right.$-bonded); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $13.46(\mathrm{~s}, 1 \mathrm{H},-\mathbf{O H}), 12.94(\mathrm{~s}, 1 \mathrm{H},-\mathbf{O H}), 8.52(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{N}-)$, $8.45(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{N}-), 8.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$, ArH), 7.49 (dd, 1H, J = 2.4 Hz, J = 8.4 Hz, ArH), 7.39 (t, 1H, J = 8.0 Hz, ArH), 7.31-7.27 $(4 \mathrm{H}, \mathrm{ArH}), 6.52-6.50(4 \mathrm{H}, \mathbf{A r H}), 4.01\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathbf{O C H}_{2}-\right)$, $2.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 1.83-1.36 (m, 12H, $-\left(\mathbf{C H}_{2}\right)_{6}$), $0.94\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{x}-\mathbf{C H}_{3}\right),{ }^{19} \mathrm{~F}$ NMR 60.93. Elemental Analysis calculated for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 67.81; $\mathrm{H}, 5.98 \%, \mathrm{~N}=4.06 \%$; Found: C, 67.18; H , $5.89 \%, \mathrm{~N}=4.00 \%$.

Using the same procedure as described above, the other compounds of $\mathbf{n - 3 C F} \mathbf{3} \mathbf{- 2 M e} \mathbf{- m}$ series $(\mathbf{n}=\mathbf{5}, \mathbf{m}=\mathbf{1 2}),(\mathbf{n}=\mathbf{1 2}, \mathbf{m}=\mathbf{5})$ and $(\mathbf{n}=\mathbf{m}=\mathbf{1 2})$, with varying the number of carbon atoms (n) and (m) in the terminal alkyloxy chains using starting compounds in appropriate molar ratios were synthesized.

4-[N-(4'-(n-pentyloxy-2-hydroxybenzylidene)amino] 3-trifluoromethylphenyl-4yl 3-[N-(4'-n-dodecyloxy-2-hydroxybenzylidene)aminol-2-methylbenzoate, 5-3CF $\mathbf{3}_{3}$-2M-12:

Yield: $1.19 \mathrm{~g},(76 \%)$; IR $v_{\max }$ in $\mathrm{cm}^{-1}: 1622$ ($v_{\mathrm{CH}=\mathrm{N}}$, imine); 1762 ($v_{\mathrm{C}=\mathrm{O}}$, ester), $3105\left(\mathrm{v}_{\mathrm{O}-\mathrm{H}}, \mathrm{H}-\right.$ bonded); ${ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $13.48(\mathrm{~s}, 1 \mathrm{H}, \mathbf{- O H}), 12.96(\mathrm{~s}, 1 \mathrm{H},-\mathbf{O H}), 8.54(\mathrm{~s}, 1 \mathrm{H},-$ $\mathrm{CH}=\mathrm{N}-$), 8.47 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{N}-$), $8.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{ArH}$), $7.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, \operatorname{ArH}), 7.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{~J}=8.4 \mathrm{~Hz}, \operatorname{ArH}), 7.39(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \operatorname{ArH})$, 7.31-7.27 ($4 \mathrm{H}, \mathrm{ArH}$), $6.52-6.50(4 \mathrm{H}, \mathbf{A r H}), 4.03\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathbf{O C H}_{2}-\right), 2.69(\mathrm{~s}, 3 \mathrm{H}$, Ar- $\mathbf{C H}_{3}$), 1.84-1.29 (m, 26H, $\left.-\left(\mathbf{C H}_{2}\right)_{13^{-}}\right), 0.96\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathbf{- C H}_{\mathbf{3}}\right), 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6$ $\mathrm{Hz},-\mathbf{C H}_{3}$). Elemental Analysis calculated for $\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 70.03 ; \mathrm{H}, 7.03 \%, \mathrm{~N}=$ 3.55%; Found: C, 69.37; H, 6.99 \%, N = 3.55\%.

4-[N-(4'-(n-dodecyloxy-2-hydroxybenzylidene)amino] 3-trifluoromethylphenyl-4yl 3-[N-(4'-n-pentyloxy-2-hydroxybenzylidene)aminol-2-methylbenzoate, 12-3CF $\mathbf{3}^{2}$-2M-5:

Yield: $1.22 \mathrm{~g},(78 \%)$; IR $v_{\text {max }}$ in $\mathrm{cm}^{-1}: 1628$ ($v_{\mathrm{CH}=\mathrm{N}}$, imine); 1749 ($v_{\mathrm{C}=\mathrm{O}}$, ester), $3103\left(v_{\mathrm{O}-\mathrm{H}}, \mathrm{H}-\right.$ bonded); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 13.46(\mathrm{~s}, 1 \mathrm{H},-\mathbf{O H}), 12.94(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 8.52(\mathrm{~s}, 1 \mathrm{H},-$ $\mathrm{CH}=\mathrm{N}-$), 8.45 (s, 1H, $-\mathrm{CH}=\mathrm{N}-$), $8.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, \mathrm{ArH}$), $7.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{~J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.39(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArH})$, 7.31-7.27 (4H, ArH), 6.52-6.50 (4H, ArH), $4.02\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathbf{O C H}_{2}-\right), 2.67(\mathrm{~s}, 3 \mathrm{H}$, Ar- $\mathbf{C H}_{3}$), 1.84-1.27 (m, 26H, -($\left.\left.\mathbf{C H}_{2}\right)_{13^{-}}\right), 0.94\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathbf{C H}_{\mathbf{3}}\right), 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8$
$\mathrm{Hz},-\mathbf{C H}_{\mathbf{3}}$). Elemental Analysis calculated for $\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 70.03 ; \mathrm{H}, 7.03 \%, \mathrm{~N}=$ 3.55%; Found: C, 69.44; H, 6.88; N = 3.55\%.

4-[N-(4'-(n-dodecyloxy-2-hydroxybenzylidene)amino] 3-trifluoromethylphenyl-4yl 3-[N-(4'-n-dodecyloxy-2-hydroxybenzylidene)amino]-2-methylbenzoate, 12-3CF $\mathbf{3}^{\mathbf{2}} \mathbf{2 M}$-12:

Yield: $1.31 \mathrm{~g},(74 \%)$; IR $v_{\max }$ in $\mathrm{cm}^{-1}: 1622$ ($v_{\mathrm{CH}=\mathrm{N}}$, imine); 1761 ($v_{\mathrm{C}=\mathrm{O}}$, ester), $3114 v_{\mathrm{O}-\mathrm{H}}$, Hbonded); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 13.46(\mathrm{~s}, 1 \mathrm{H},-\mathbf{O H}), 12.94(\mathrm{~s}, 1 \mathrm{H},-\mathbf{O H}), 8.52(\mathrm{~s}, 1 \mathrm{H},-$ CH=N-), 8.45 (s, 1H, -CH=N-), $8.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.58 (d, 1H, J = $2.4 \mathrm{~Hz}, \operatorname{ArH}$), $7.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{~J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.39(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArH})$, 7.31-7.27 ($4 \mathrm{H}, \mathrm{ArH}$), $6.52-6.50(4 \mathrm{H}, \mathbf{A r H}), 4.01\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathbf{O C H}_{2}-\right), 2.67(\mathrm{~s}, 3 \mathrm{H}$, Ar- $\mathbf{C H}_{3}$), 1.83-1.27 (m, 40H, $-\left(\mathbf{C H}_{2}\right)_{2}$) , $0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times-\mathbf{C H}_{3}\right)$. Elemental Analysis calculated for $\mathrm{C}_{53} \mathrm{H}_{69} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 71.76 ; $\mathrm{H}, 7.84 \%, \mathrm{~N}=3.16$; Found: C, 71.01; H, $7.45 \%, \mathrm{~N}=3.15 \%$.

Figure 1a: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra of representative compound $\mathbf{5 - 3} \mathrm{CF}_{\mathbf{3}} \mathbf{- 2 M - 5}$

Figure 1b: FT-IR spectra of 5-3CF3-2M-5

Figure 1d: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of representative compound $\mathbf{1 2 - 3} \mathrm{CF}_{\mathbf{3}} \mathbf{- 2 M} \mathbf{M}$

1H OF 12-3CF3-2M-12, CIL, AUS

Figure 1e: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of representative compound $\mathbf{1 2 - 3} \mathrm{CF}_{\mathbf{3}} \mathbf{- 2 M} \mathbf{- 1 2}$

Figure 1a: Differential scanning calorimetry thermogram of of compound 5-3CF $\mathbf{3} \mathbf{- 2 M - 5}$ in the second heating and cooling at $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure 1b: Differential scanning calorimetry thermogram of of compound 5-3CF $\mathbf{3} \mathbf{- 2 M - 1 2}$ in the second heating and cooling at $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure 1c: Differential scanning calorimetry thermogram of compound $\mathbf{1 2 - 3 C F} \mathbf{3} \mathbf{- 2 M} \mathbf{- 5}$ in the second heating and cooling at $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure 1d: Differential scanning calorimetry thermogram of of compound $\mathbf{1 2 - 3} \mathrm{CF}_{\mathbf{3}} \mathbf{- 2 M - 1 2}$ in the second heating and cooling at $5^{\circ} \mathrm{C} / \mathrm{min}$.
2. Polarizing Optical micrographs of BPIII:

Figure 2a: POM images exhibiting Iso-BPIII-N* transition in a planar cell of thickness $4 \mu \mathrm{~m}$ for the mixture 5-3CF3-2M-5 + 30\% S811
$44^{\circ} \mathrm{C}$
$4^{43^{\circ} \mathrm{C}} \quad{ }^{42^{2 \mathrm{C}}}$

$41^{\circ} \mathrm{C}$
BPIII $40^{\circ} \mathrm{C}$
N^{*}

Figure 2b: POM images exhibiting Iso-BPIII-N* transition in a planar cell of thickness $4 \mu \mathrm{~m}$ for the mixture 5-3CF3-2M-12 + 30\% S811.

