Electronic Supplementary Information

One-step Fabrication of CdS:Mo/CdMoO₄ Core-Shell Nanoribbons-Based Nonvolatile Memory with High Resistance Switching

Ni Zheng, Zhibin Shao,* Feifei Xia, Tianhao Jiang, Xiaofeng Wu, Xiujuan Zhang,*

Jiansheng Jie*, Xiaohong Zhang

Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China

*E-mail: jsjie@suda.edu.cn, zbshao@suda.edu.cn, xjzhang@suda.edu.cn.

Table S1.	Comparison	of device	performances	of semiconductor	nanostructure F	ΈT-
-----------	------------	-----------	--------------	------------------	-----------------	-----

Semiconductor	Trapping layer	ON/OF	Memory window /	Reference
channel		F	Operating voltage (V)	
CdS	CdMoO ₄	106	60/120	Our work
Si, GaN, InP	Redox active molecules	104	10/20	1
Ge	Water molecule	103	30/80	2
ZnO	Ferroelectric	104	5/12	3
ZnO	Ferroelectric	104	10/25	4
QQT(CN)4	Ferroelectric	10 ³	25/100	5
ZnO	Protons	105	30/45	6
CdS	Au	105	4/10	7
Si	Ag	10	60/120	8
РЗНТ	Au	104	10/25	9
Si	Ta ₂ O ₅	105	6/30	10
РЗНТ	MoS ₂ nanoflakes	105	20/160	11

based NVMs.

REFERENCE

- 1 X. F. Duan, Y. Huang and C. M. Lieber, *Nano Lett.*, 2002, **2**, 487.
- 2 W. H. Chen, C. H. Liu, Q. L. Li, Q. J. Sun, J. Liu, X. Gao, X. H. Sun and S. D. Wang, *Nanotechnology*, 2014, 25, 075201.
- 3 L. Liao, H. J. Fan, B. Yan, Z. Zhang, L. L. Chen, B. S. Li, G. Z. Xing, Z. X. Shen, T. Wu, X. W. Sun, J. Wang and T. Yu, ACS Nano, 2009, 3, 700.
- 4 J. I. Sohn, S. S. Choi, S. M. Morris, J. S. Bendall, H. J. Coles, W.-K. Hong, G. Jo, T. Lee and M. E. Welland, *Nano Lett.*, 2010, **10**, 4316.
- 5 R. H. Kim, H. J. Kim, I. Bae, S. K. Hwang, D. B. Velusamy, S. M. Cho, K. Takaishi, T. Muto, D. Hashizume, M. Uchiyama, P. André, F. Mathevet, B. Heinrich, T. Aoyama, D.-E. Kim, H. Lee, J.-C. Ribierre and C. Park, *Nat. Commun.*, 2014, 5, 3583.
- 6 J. Yoon, W.-K. Hong, M. Jo, G. Jo, M. Choe, W. Park, J. I. Sohn, S. Nedic, H. Hwang, M. E. Welland and T. Lee, ACS Nano, 2010, 5, 558.
- 7 P. C. Wu, Y. Dai, Y. Ye, X. L. Fang, T. Sun, C. Liu and L. Dai, J. Mater. Chem., 2010, 20, 4404.
- 8 J.-H. Choi, J. Sung, K.-J. Moon, J. Jeon, Y. H. Kang, T. I. Lee, C. Park and J.-M. Myoung, J. Mater. Chem., 2011, 21, 13256.
- 9 H.-C. Chang, C.-L. Liu and W.-C. Chen, Adv. Funct. Mater., 2013, 23, 4960.
- 10 H. Zhu, J. E. Bonevich, H. Li, C. A. Richter, H. Yuan, O. Kirillov and Q. Li, *Appl. Phys. Lett.*, 2014, **104**, 233504.
- 11 M. J. Kang, Y.-A. Kim, J.-M. Yun, D. Khim, J. Kim, Y.-Y. Noh, K.-J. Baeg and D.-Y. Kim, *Nanoscale*, 2014, 6, 12315.

Fig. S1 EDS spectrum of the CdS-CdMoO₄ core-shell NRs.

Fig. S2 Electrical transfer characteristics of intrinsic CdS NR based NVM devices at different operating voltages with linear coordinate.

Fig. S3 I_{DS} - V_{DS} curves of the CdS-CdMoO₄ core-shell NR plotted in double logarithmic scales. The curves were fitted with straight lines according to the relation of I_{DS} - V_{DS} .