Dual Fluorescent Zwitterionic Organogel of a Quinoxalinone Derivative using Cation–Anion Detection Keys

Yuta Nakane, Takashi Takeda, Norihisa Hoshino, Ken-ichi Sakai, and Tomoyuki Akutagawa

Contents

- 1. NMR, Mass, and IR spectra of 1 (Figure S1).
- 2. Atomic numbering scheme of single crystal $K^+ \cdot \mathbf{1} \cdot PF_6^-$ (Figure S2).
- 3. Packing structure of $K^+ \cdot 1 \cdot PF_6^-$ (Figure S3).
- 4. Atomic numbering scheme of single crystal TBA⁺•1⁻•(H₂O)₂ (Figure S4).
- 5. Packing structure of TBA⁺•1⁻•(H₂O)₂ (Figure S5).
- 6. HOMO and LUMO orbitals of **1** based on DFT calculations (Figure S6).
- 7. Absorption and fluorescence spectra of 1 by the addition of K^+ ion in CH₃CN (Figure S7).
- 8. ¹H NMR titration curve by the addition of K^+ ions (Figure S8).
- 9. Absorption and fluorescence spectra of 1 by the additions of F⁻ and AcO⁻ (Figure S9).
- 10. Fitting curves of the two steps F⁻ and AcO⁻ recognitions processes (Figure S10).
- 11. Fluorescence spectra of $K^+ \cdot 1$ by the addition of AcO⁻ anion (Figure S11).
- 12. Fluorescence titration spectra of $K^+ \cdot 1$ by the addition of AcO⁻ anion (Figure S12).
- 13. Fitting curve of the two-steps successive anion recognition of K⁺•1 in CH₃CN (Figure S13).
- 14. Changes in the UV-vis spectra of 1^{-} anion by the addition of K^{+} (Figure S14)
- 15. Fitting curve of K⁺ binding constant at [18]crown-6 unit of anionic **1**⁻ using the 1:1 complex formation model (Figure S14).
- 16. Determination of two-steps complex formation constants.

Figure S1. Characterization of 1. a) ¹H NMR, b) ¹³C NMR, c) Mass, and d) IR spectra of 1.

Figure S2. Atomic numbering scheme of single crystal $K^+ \cdot 1 \cdot PF_6^-$.

Figure S3. Unit cells of $K^+ \cdot 1 \cdot PF_6^-$ viewed a) along the *b* and b) along the *c* axis.

Figure S4. Atomic numbering scheme of single crystal $TBA^+ \cdot 1^- \cdot (H_2O)_2$.

Figure S5. Packing structure of $TBA^+ \cdot 1^- \cdot (H_2O)_2$ viewed along the *b* axis.

Figure S6. Frontier orbitals of 1 a) for HOMO, b) for LUMO and of C1QXa c) for HOMO, d) for LUMO based density functional theory (DFT) calculations using the B3LYP-6-31G (d, p) basis set in Gaussian 09W.

Figure S7. K^+ titration spectra of **1** in CH₃CN. a) Absorption and b) fluorescence spectra by the addition of 21 equivalents of K^+ in CH₃CN.

Figure S8. ¹H NMR titration spectra of **1** (2.0 mM) in CD₃CN using $K^+ \cdot PF_6^-$. Plots of chemical shift of H_a and titration amount of K⁺ ion per **1**. Red line was a fitting curve of 1:1 complex formation between **1** and K⁺ ion.

Figure S9. Titration spectra of **1** using a) 6.8 equivalent of F^- at fluorescence spectra and b) 6.4 equivalent of AcO⁻ anions at UV-vis spectra in CH₃CN. The excitation wavelength was fixed at 399 nm.

Figure S10. Fitting curves of two steps a) F^- and b) AcO⁻ recognitions processes using the fluorescence titration spectra of **1**.

Figure S11. Fitting curves of two steps a) F^- and b) AcO⁻ recognitions processes using the UV-vis titration spectra at 415 nm of **1**.

Figure S12. Fluorescence titration spectra of $K^+ \cdot \mathbf{1}$ by the addition of 2.6 equivalent of AcO⁻ anion.

Figure S13. Fitting curve of the two-step AcO^{-} anion recognition processes of $K^{+}\cdot 1$ in CH_3CN . Titration data of a) fluorescence band at 481 nm and b) UV-vis band at 415 nm.

Figure S14. UV-vis spectra of 1^{-} anion by the addition of 3.4 equivalent of K⁺.

Figure S15. Fitting curve of K^+ recognition process of anionic 1⁻ at the fluorescence spectra using the 1:1 complex formation model.

Determination of complex formation constants.

Titration data were fitted by non-linear regression analyses using the global fitting program of Igor Pro 5.03J. The two steps complex formation model in the equations (1), (2), and (3) is applied to determine the K_1 and K_2 values form the optical titration data.

$$1 + X^{-} \xrightarrow{K_{1}} 1 \cdot X^{-} + X^{-} \xrightarrow{K_{2}} 1^{-} + HX_{2}^{-}$$
(1)
(X⁻ = F⁻ or AcO⁻)

$$K_1 = \frac{[1 \cdot X^-]}{[1][X^-]} \tag{2}$$

$$K_2 = \frac{[1^-][H^+X^-]}{[1\cdot X^-]} \tag{3}$$

Absorbance (A) and Fluorescence intensity (F) are represented by equations(4) and (5), respectively.

$$\mathbf{A} = \frac{\varepsilon_{\mathrm{LH}} + \varepsilon_{\mathrm{LH}\cdot\mathrm{X}} \,\mathrm{K}_{1} \,[\mathrm{X}] + \varepsilon_{\mathrm{L}} \mathrm{K}_{1} \,\mathrm{K}_{2} [\mathrm{X}]}{1 + \mathrm{K}_{1} \,[\mathrm{X}] + \mathrm{K}_{1} \,\mathrm{K}_{2} [\mathrm{X}]^{2}} \tag{4}$$

$$\mathbf{F} = \frac{k_{\rm LH} + k_{\rm LH\cdot X} \, K_1 \, [X] + k_{\rm L} K_1 \, K_2 [X]}{1 + K_1 [X] + K_1 K_2 [X]^2}$$
(5),

where the constant k is corresponding to a proportionality factor F = k [c] in fluorescence spectra.

The [X] is a solution of three order equation (6),

$$A[X]^{3} + B[X]^{2} + C[X] + D = 0$$
(6),

$$A = K_1 K_2$$
, $B = K_1 + 2K_1 K_2 [LH]_t - K_1 K_2 [X]_t$

S10

$$C = 1 + K_1[H]_t - K_1[X]_t$$
, $D = -[X]_t$

The binding constants of K_1 and K_2 were obtained by the fitting procedure of equations (4) and (5), where the unknown parameters of ε_{LH+X} , ε_L , k_{LH+X} , and k_L are also determined by the regression analysis. Newton method is used in the regression program of equation (6).