Electronic Supplementary Information

DFT study and experimental evidence for the sonication-induced cleavage of molybdenum sulfide Mo₂S₃ in liquids

Mariia N. Kozlova,^a* Andrey N. Enyashin,^b Ekaterina D. Grayfer,^a Vitalii A. Kuznetsov,^a Pavel E. Plyusnin,^{a, c} Nadezhda A. Nebogatikova,^d Vladimir I. Zaikovskii,^{c, e} Vladimir E. Fedorov^{a, c}*

^aNikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation

^bInstitute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences, 91, Pervomayskaya st., Ekaterinburg, 620990, Russian Federation

^cNovosibirsk State University, 2, Pirogova st., Novosibirsk, 630090, Russian Federation

^dRzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation

^eBoreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, 5, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation

* kozlova@niic.nsc.ru, * fed@niic.nsc.ru

Fig. S1. Three possible methods of cleaving Mo_2S_3 crystal into nanosheets depending on the construction of a single "molecular" layer (*painted fields on the top*): (a) along the (001) plane with removal of unsaturated Mo and S atoms; (b) along the (001) plane and with tetrahedral coordination of surface Mo atoms; (c) along the (101) plane. The models of triple layer nanosheets corresponding to every type of cleavage are visualized below in two main directions and with painted unit cell. Mo and S atoms are painted in red and yellow, respectively. Geometry of all structures is optimized using DFT method.

Fig. S2. Total and partial Mo densities of states for the bulk Mo_2S_3 (a), the clean $Mo_2S_3(101)$ five-layer nanosheet (b) and the same nanosheet with H_2O (c) or DMSO molecules (d) anchored to Mo atoms. DFT calculations.

Fig S3. XRPD data of the bulk Mo_2S_3 sample (line 1) compared with the theoretical X-ray diffraction pattern of Mo_2S_3 (line 2) (73453-ICSD card).

Fig. S4. HRTEM overview of the Mo_2S_3 nanostructures in colloids from the ethanol-water dispersion

Fig. S5. HRTEM image of Mo_2S_3 particle obtained from the dispersion in ethanol-water, showing its layer structure (inset is simulated image with lattice fringes (-101), corresponding zone axis: [101] of the crystal (parameters are: d / nm = 66.8, t / nm = 0.9, where d – defocusing of microscope, t - thickness of the crystal).

Fig. S6. (a) – XRPD data for films obtained by filtering the dispersions in ethanol-water mixture (1), i-PrOH (2), NMP (3), DMSO (4) compared with the theoretical X-ray diffraction of Mo₂S₃ (5) (73453-ICSD card). Symbol (*) indicates the reflection of filter material. (b) – photograph of film prepared from DMSO dispersion by filtration.

Fig. S7. Time dependence of electrical resistance of the Mo₂S₃ thin film sample in the presence of DMSO during the whole experimental time range. The dependence shows that the resistance was completely recovered in about 14000 s.