Supplementary Information for

## **Confocal Microsopic Investigation of a Single Squaraine Dye Aggregate**

G. M. Paternò<sup>1,\*</sup>, L. Moretti<sup>2</sup>, A. Barker<sup>1</sup>, N. Barbero<sup>3</sup>, S. Galliano<sup>3</sup>, C.Barolo<sup>3,4</sup>, G. Lanzani<sup>1,2</sup> and F. Scotognella<sup>1,2</sup>

<sup>1</sup>Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan, Italy

<sup>2</sup> Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

<sup>3</sup> Dipartimento di Chimica and NIS Interdepartmental and INSTM Reference Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy

<sup>4</sup> ICxT Interdepartmental Centre, Università di Torino, Lungo Dora Siena 100, 10100 Torino, Italy

\*Email - giuseppe.paterno@iit.it, giusepate@gmail.com



Figure S1. Surface profile of the aggregates as measured by profilometry.



Figure S2. (a) Height and (b) phase AFM images of the VG1-C8 film. The calculated mean-square-roughness is 1.4 nm.

a



**Figure S3.** PL spectra taken at the three different regions namely, film, aggregated-border and centre, alongside the Gaussian fittings. We can see that, whereas the PL spectra coming from the film and border are in-fact a convolution of both monomeric and aggregate emission, the PL taken at the centre of the aggregate can be fitted effectively with one Gaussian (plus a broad background contribution).



**Figure S4.** PL time-decay profiles for the VG1-C<sub>8</sub> and aggregate. The time-constants for the aggregate are  $\tau_1$ = 39.1 ± 0.6 ps (A<sub>1</sub> = 95%) and  $\tau_1$ = 1.5 ± 0.2 ns (A<sub>2</sub> = 5%), and for the film are  $\tau_1$ = 38.2 ± 2 ps (A<sub>1</sub> = 62%) and  $\tau_1$ = 1.6 ± 1 ns (A<sub>2</sub> = 38%).