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Figure 1: Spatial distribution of the spin polarization for the doping density 6 ×1013/cm2. The
polarization appears on both C and N atomic sites.
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Figure 2: (a) Magnetic moment per carrier versus temperature for several different electron doping
densities. Here the magnetic moment is evaluated from the electronic free energy. From the curves,
one can estimate the magnetic transition (Curie) temperature. In (b), we plot the estimated Curie
temperature against the doping density.
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Figure 3: Magnetic moment per carrier versus strain εz for several different doping densities. Here
the strain εz is applied along the zigzag direction (as indicated in Fig. 1(a) in the main text). One
observes that the magnetism can be effectively tuned by strain.
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Figure 4: Electron doping to h2D-C2N by adsorption of Li atoms. The three sub-figures ares sim-
ulating the doping concentrations of (a) 0.25 e/u.c., (b) 0.33 e/u.c., and (c) 0.50 e/u.c. respectively,
where u.c. stands for primitive unit cell. At low doping density, Li tends to stay at the center of the
hole, within the same 2D plane as the material. Our calculation confirms that the system indeed be-
come ferromagnetic. The plot in this figure shows the spin density distribution (i.e. the difference
between spin-up and spin-down densities). The results for Na and K adsorption are similar.
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Figure 5: (a) Antiferromagnetic configuration. (b) Energy difference (EAFM −EFM) between AFM
and FM configurations as a function of doping.
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Figure 6: Phonon spectra for (a) undoped C2N, and (b) C2N with doping density of 6 ×1013/cm2.
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Table 1: Electron doping to h2D-C2N by adsorption of alkali atoms: N denotes the doping density,
Eb is the binding energies of the adsorbed atoms, and M is resulting magnetic moment per electron
carrier.

Adatom N (e/u.c.) Eb (eV/adatom) M (µB/e)
Li 0.25 4.194 0.9309

0.33 4.220 0.8300
0.50 4.295 0.7974

Na 0.25 4.106 0.9765
0.33 4.141 0.9173
0.50 4.167 0.8501

K 0.25 4.087 0.9998
0.33 4.117 0.9800
0.50 4.142 0.9544
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