Supporting Information

Enhanced electromagnetic interference shielding behavior of graphene nanoplatelet/Ni/Wax nanocomposites

Hye Ji Im^a, Gwang Hoon Jun^b, Dong Ju Lee^c, Ho Jin Ryu^{*d} and Soon Hyung Hong^{*a}

^aDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea E-mail: meji1013@kaist.ac.kr, shhong@kaist.ac.kr ^bCorporate R&D, Research Park, LG Chem, 188 Moonji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea ^cNuclear Materials Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea ^dDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea

*Corresponding authors Tel:+82-42-350-3367. E-mail : shhong@kaist.ac.kr (Soon Hyung Hong) Tel:+82-42-350-3812. E-mail : hojinryu@kaist.ac.kr (Ho Jin Ryu)

Fig. S1 Scanning electron microscopy (SEM) images of GNP/Ni/wax containing (a) GNP/Ni (M) and (b) GNP/Ni (B).

Fig. S2 (a) Survey scans for XPS spectra of GNP/Ni (B). (b) C 1s spectra of GNP/Ni (B). (c) O 1s spectra of GNP/Ni (B).

Table S1 List of functional groups and their relative atomic percentage in C 1s and O 1s peaks of GNP/Ni (M) and GNP/Ni (B) nano-sized powders.

		Functional groups (relative atomic percentage [%])				
GNP/Ni (M)	C 1s peaks	sp ² C-C (65.36at%)	C-OH (12.42at%)	C=O (9.80at%)	C-O (8.50at%)	C-Ni (3.92at%)
	O 1s peaks	C=O/COO (49.26at%)	C-OH (37.93at%)	Ni-O (7.39at%)	Ni-O-C (5.42at%)	
GNP/Ni (B)	C 1s peaks	sp ² C-C (63.69at%)	sp ³ C-C (17.20at%)	C=O (10.19at%)	C-O (8.92at%)	
	O1s peaks	C=O/COO (81.97at%)	C-OH (13.93at%)	Ni-O (4.10at%)		

Fig. S3 Plot of magnetization versus magnetic field for GNP at room temperature.

Fig. S4 Log electrical conductivities of wax nanocomposites filled with GNP and GNP/Ni nanocomposites (volume ratio of 7:3 and 9:1) (30 wt.%)

Experimental

1. Fabrication of RGO/Ni nanocomposites

The typical process includes two steps.

(1) Synthesis of GO powders

GO were synthesized from natural graphite by the Hummers' method.¹ Graphite (1 g) and H_2SO_4 (40 mL) were mixed through stirring in an ice bath. KMnO₄ (3.5 g) was slowly added as an oxidizing agent to the solution. After stirring, DI water was added slowly to this as the oxygen source. Then, H_2O_2 (10 mL) was added to remove Mn ions. This solution was filtered and rinsed with a HCl solution to remove the residual. GO powders were obtained after drying under vacuum.

(2) Fabrication of RGO/Ni by the molecular-level mixing process

Fabrication process of RGO/Ni is the same with that of GNP/Ni by the molecular-level mixing process. GO (500 mg) was dispersed in ethylene glycol (500 ml) by ultrasonication for 2 hours. Ni(CH3CO2)2·(H2O)4 (0.966 g) was added and mixed with the GO solution (volume ratio of RGO/Ni about 9:1). Then, aqueous 2M NaOH (5 ml) was added to the solution and the mixed solution was heated to 60°C. Subsequently, hydrazine monohydrate (5 ml) was introduced under continuous heating at 60°C. After cooling the mixture, it was filtered and rinsed with ethanol. The powders were dried at 80°C under vacuum and completely reduced into RGO/Ni powders at 400°C for 3 hours under hydrogen atmosphere.

2. Fabrication of RGO powders²

GO powders were dispersed in DI water (3mg/ml) by sonicating for 2 hours. Hydrazine monohydrate (1ul for 3mg of GO) was subsequently added to the GO solution. Additional stirring in an oil bath was held at 80°C for 12 hours. This process results in black reduced graphene oxide powder. After cooling to room temperature, the powders were filtered and dried under vacuum.

<u>References</u>

- 1. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339–1339.
- S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali and R. S. Ruoff, *Carbon*, 2011, 49, 3019–3023.

Fig. S5 (a) EMI shielding effectiveness of wax nanocomposites filled with RGO and RGO/Ni (30 wt.%) with 0.7 mm in thickness from 8 to 12 GHz. (b) Raman spectra of RGO/Ni.

Table S2 Electrical conductivities and EMI SE values of GNP, RGO, and their nanocomposites at8 and 12 GHz.

20wt0/ in way	Conductivity (S/am)	EMI SE (dB)		
50wt% III wax	Conductivity (S/cm)	8 GHz	12 GHz	
GNP	0.73916 ± 0.2724	27.705	23.947	
GNP/Ni (M)	3.1390 ± 0.6278	38.552	37.4	
		-		
RGO	0.07536 ± 0.01613	10.335	8.468	
RGO/Ni (M)	0.22382 ± 0.08902	19.035	17.117	