SUPPORTING INFORMATION

Processing of ferroelectric polymers for microelectronics: from morphological analysis to functional devices

Hamed Sharifi Dehsari¹, Jasper J. Michels^{1*}, Kamal Asadi^{1*}

¹Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany

S1 Input parameters for modeling

Input parameters Flory-Huggins model. The Flory-Huggins free energy density for our ternary blend is given by:¹

$$\frac{f}{kT} = \frac{\phi_P}{N_P} ln\phi_P + \frac{\phi_W}{N_W} ln\phi_P + \frac{\phi_S}{N_S} ln\phi_P + \chi_{PW}\phi_P\phi_W + \chi_{PS}\phi_P\phi_S + \chi_{WS}\phi_W\phi_S$$
(S1)

We obtain the effective molecular sizes N_i in terms of numbers of lattice sites by normalizing the molar volumes of all components by that of the smallest species in the mixture (here water, so: $N_W = 1$). The polymer is obviously much larger and taken to have an effective degree of polymerization of $N_P = 1000$. The average molecular weight of the experimentally used P(VDF-TrFE) (see Experimental section) even suggests $N_P \sim 7000$. We nevertheless take the lower value as it renders more numerical stability while calculating the binodal concentrations, with only very minor changes to the phase diagram and demixing dynamics. We take $N_s = 5$ for cvclohexanone and cvclopentanone and $N_s = 4$ for DMF, with the remark that the exact molecular size of the solvent does not noticeably affect the phase behavior. The binary interaction parameters used in our study are: $\chi_{PW} = 2.8$, $\chi_{PS} = 0.1$ and $\chi_{WS} = 0.89$, 1.67 and 2.3 for DMF, cyclohexanone and cyclopentanone respectively. The value for χ_{PW} is consistent with the literature value for PVDF:water,² assuming a comparable interaction for P(VDF-TrFE). The value for χ_{PS} assumes the solvent to be moderate to good in all cases, in line with experimental observations. The values for χ_{WS} for the interaction between water and the various solvents are to some extent a trade-off between approaching physical reality as closely as possible and obtaining numerical stability. The value for $\chi_{water-DMF}$ assures full miscibility between water and solvent. The values for $\chi_{water-cyclohexanone}$ and $\chi_{water-cyclopentanone}$ give water saturation concentrations of ~14% and ~4%, respectively, and somewhat overestimate the water compatibility of both solvents at 20 °C. The former is in fair agreement with tabulated data.³ The latter is overestimated in comparison to tabulated data,⁴ but that does not affect our reasoning. In contrast, it even sketches a "worser case" scenario.

Vapor pressures water and solvents. The vapor pressures relevant to this work have been retrieved from readily accessible tabulated values: $p_W^{\circ}(20 \,^{\circ}\text{C}) = 2333 \,^{Pa}$ (subscript "W" for water), $p_{cyclohexanone}(20 \,^{\circ}\text{C}) = 667 \,^{Pa}$, and $p_{cyclopentanone}(20 \,^{\circ}\text{C}) = 1467 \,^{Pa}$. The polymer (indicated by subscript "P") is non-volatile: $p_P^{\circ} = 0 \,^{Pa}$. The applied partial pressures are assumed constant and taken to be $p_i^{\infty} = 0 \,^{Pa}$ for i = S, P (subscripts "S" and "P" for solvent and polymer) and $p_W^{\infty} = \frac{RH}{100} \cdot p_W^{\circ}(20 \,^{\circ}\text{C})$ for water, with RH the relative humidity given as a percentage of $p_{H_2^{\circ}0}$.

Mass transfer coefficient. The mass transfer coefficient k is (for all modeled blends) assigned a value of 0.01 $D_S^0 M_S / \rho_S \kappa RT$, with D_S^0 , M_S and ρ_S the self-diffusivity, molar weight and mass density of the solvent, κ an effective gradient energy coefficient (see below), R the ideal gas constant and T the absolute temperature (here assumed to be 293 K). The choice for the value of k, which in reality is hard to establish, represents a situation wherein, roughly stated, the typical timescale for evaporation somewhat exceeds that of solvent diffusion. Changing the magnitude of k does affect demixing dynamics, but the general trends in the humidity-dependence of the characteristic time and length scales associated to vapor-induced demixing predicted by our ternary phase field model remains.

S2 Supplementary experimental results

Figure S1. AFM height images of P(VDF-TrFE) thin films coated from solution in DMF at 50% relative humidity and substrates temperature of (a) 20°C, (b) 35°C, (c) 50°C, (d) 65°C and (d) 80°C. The scale bar is 10 μ m. The images of (a) and (d) are also given in the main text.

Figure S2. AFM height images of P(VDF-TrFE) thin films coated from solution in a-DMF at 50% relative humidity and substrates temperature of (a) 20° C, (b) 35° C, (c) 50° C, (d) 65° C and (d) 80° C. The scale bar is 10 µm. The image (a) is also given in the main text.

Figure S3. AFM height images of P(VDF-TrFE) thin films coated from solution in a-DMF at 10% relative humidity and substrates temperature of (a) 20° C, (b) 35° C, (c) 50° C, (d) 65° C and (d) 80° C. The scale bar is 10 µm.

Figure S4. AFM height images of P(VDF-TrFE) thin films coated from solution in cyclohexanone at 50% relative humidity and substrates temperature of (a) 20°C, (b) 35°C, (c) 50°C, (d) 65°C and (d) 80°C. The scale bar is 10 μ m. The image (a) is also given in the main text.

Figure S5. AFM height images of P(VDF-TrFE) thin films coated from solution in cyclopentanone at 50% relative humidity and substrates temperature of (a) 20° C, (b) 35° C, (c) 50° C, (d) 65° C and (d) 80° C. The scale bar is 10 µm. The image (a) is also given in the main text.

Figure S6. (a) Layer thickness and (b) rms roughness plotted as a function of substrate temperature measured for films prepared films at a fixed relative humidity of 50% (80% only for cyclopentanone).

Figure S7. Schematic cross-sectional images explaining why the mean thickness of VIPSinfluenced films is overestimated due to the high roughness. Films cast under under ambient conditions (20°C and 50% RH) from (a) Cyclohexanone and (b) cyclopentanone. The scale bar is $10 \,\mu$ m.

Figure S8. AFM height image of P(VDF-TrFE) thin films with the thickness of 150 ± 20 nm coated from the solution in (a) cyclohexanone and (b) cyclopentanone under ambient conditions.

The scale bar is 5 μ m.

rms roughness = 9.8 ± 1.2 nm

rms roughness = 10.7 ± 1.3 nm

Figure S9. AFM height images of P(VDF-TrFE) thin films coated from solution in cyclopentanone at 50% relative humidity and substrates temperature of 20°C (a) before and (b) after annealing. The scale bar is 4 μ m.

References

- 1. P. J. Flory, *Principles of polymer chemistry*, Cornell University Press, 1953.
- A. Ghodsi, H. Fashandi, M. Zarrebini, M. M. Abolhasani and M. Gorji, *RSC Adv.*, 2015, 5, 92234-92253.

3. PubChem Compound Database, https://pubchem.ncbi.nlm.nih.gov/compound/7967, (accessed March 30, 2017).

4. PubChem Compound Database, https://pubchem.ncbi.nlm.nih.gov/compound/8452. (accessed March 30, 2017).