WILEY-VCH

Supporting Information

Colorimetric Sensor Array for Amines based on Responsive Lanthanide Complex Entrapment

Peng Li, Zhiqiang Li, Decui Yao, and Huanrong Li*

School of Chemical Engineering and Technology, Hebei University of Technology,

Guang Rong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.

*E-mail: <u>lihuanrong@hebut.edu.cn</u>

Figure S1 Molecular structure of HFA.

Figure S2 XRD pattern of zeolite Y (ZY)

Figure S3 SEM images of zeolite Y (ZY)

Figure S4 a) Emission spectra of $Eu_1Tb_9(HFA)_n@ZY$ after treatment with various amine vapors using an excitation wavelength of 302 nm. $(Eu_1Tb_9(HFA)_n@ZY$ (red line), aniline (green line), Benzylamine (blue line), Propylamine (cyan line), 1,3-Propanediamine (magenta line), Ethylenediamine (yellow line), Triethylamine (dark yellow line), Cyclohexylamine (navy line), Methylamine (purple line), N- Methylaniline (wine line), Butylamine (olive line), ammonia (dark cyan line), Tert-butylamine (royal line), Ethylamine (orange line)) b) The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of $Eu_1Tb_9(HFA)_n@ZY$ excitated at 302 nm upon treatment with various amine solvent vapors. (a: $Eu_1Tb_9(HFA)_n@ZY$, b: Aniline, c: Benzylamine, d: Propylamine, e: 1,3-Propanediamine, f: Ethylenediamine, g: Triethylamine, h: Cyclohexylamine, i: Methylamine, j: N- Methylaniline , k: Butylamine, l: Ammonia, m: Tert-butylamine and n: Ethylamine)

Figure S5 a) Emission spectra of $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ after treatment with various amine vapors using an excitation wavelength of 302 nm. $(Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ (red line), aniline (green line), Benzylamine (blue line), Propylamine (cyan line), 1,3-Propanediamine (magenta line), Ethylenediamine (yellow line), Triethylamine (dark yellow line), Cyclohexylamine (navy line), Methylamine (purple line), N- Methylaniline (wine line), Butylamine (olive line), ammonia (dark cyan line), Tert-butylamine (royal line), Ethylamine (orange line)) b) The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ excitated at 302 nm upon treatment with various amine solvent vapors. (a: $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$, b: Aniline, c: Benzylamine, d: Propylamine, e: 1,3-Propanediamine, f: Ethylenediamine, g: Triethylamine, h: Cyclohexylamine, i: Methylamine, j: N- Methylaniline , k: Butylamine, l: Ammonia, m: Tert-butylamine and n: Ethylamine, j: N- Methylaniline , k: Butylamine, l:

Figure S6 a) Emission spectra of $Eu_2Tb_8(HFA)_n@ZY$ after treatment with various amine vapors using an excitation wavelength of 302 nm. $(Eu_2Tb_8(HFA)_n@ZY$ (red line), aniline (green line), Benzylamine (blue line), Propylamine (cyan line), 1,3-Propanediamine (magenta line), Ethylenediamine (yellow line), Triethylamine (dark yellow line), Cyclohexylamine (navy line), Methylamine (purple line), N- Methylaniline (wine line), Butylamine (olive line), ammonia (dark cyan line), Tert-butylamine (royal line), Ethylamine (orange line)) b) The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of $Eu_2Tb_8(HFA)_n@ZY$ excitated at 302 nm upon treatment with various amine solvent vapors. (a: $Eu_2Tb_8(HFA)_n@ZY$, b: Aniline, c: Benzylamine, d: Propylamine, e: 1,3-Propanediamine, f: Ethylenediamine, g: Triethylamine, h: Cyclohexylamine, i: Methylamine, j: N- Methylaniline , k: Butylamine, l: Ammonia, m: Tert-butylamine and n: Ethylamine)

	Tb(HFA) _n @ZY	Triethylamine	Benzylamine	Aniline	Butylamine
τ _{Tb} (τ _{Tb} ') /ms	0.351	0.302	0.146	0.183	0.163
lnk _{back} /s ⁻¹		6.136	8.294	7.872	8.097
	Tert-butylamine	N-Methylaniline	Cyclohexylamine	Ammonia	Ethylamin
τ _{Tb} (τ _{Tb} ') /ms	0.291	0.217	0.240	0.015	0.015
lnk _{back} /s ⁻¹	6.389	7.473	7.184	11.064	11.064
	Propylamine	1,3-Propanediamine, Methylamine		amine	Ethylenediamine
τ _{Tb} (τ _{Tb} ') /ms	0.038	0.018 0.0		15	0.020
Ink _{back} /s ⁻¹	10.063	10.872	11.064		10.761

Table S1 The emission lifetimes of Tb(HFA)_n@ZY before (τ_{Tb}) and after treatment with various amine vapors (τ_{Tb}) and the energy back-transfer rates $\ln k_{back}$ from the emitting level of the Tb³⁺ ion to the excited triplet state of HFA.

Figure S7 Emission spectra of $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ after treatment with several amine vapors using an excitation wavelength of 302 nm. $(Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ (black line), ammonia (red line), Propylamine (blue line), Butylamine (cyan line), 1,3-Propanediamine (magenta line), Benzylamine (orange line)). Inset: The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ excitated at 302 nm upon treatment with several amine solvent vapors. (a: $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$, b: ammonia, c: Propylamine, d: Butylamine, e: 1,3-Propanediamine, f: Benzylamine).

Figure S8 Emission spectra of $Eu_1Tb_9(HFA)_n@ZY$ after treatment with several amine vapors using an excitation wavelength of 302 nm. $(Eu_1Tb_9(HFA)_n@ZY$ (black line), ammonia (red line), Propylamine (blue line), Butylamine (cyan line), 1,3-Propanediamine (magenta line), Benzylamine (orange line)). Inset: The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of $Eu_1Tb_9(HFA)_n@ZY$ excitated at 302 nm upon treatment with several amine solvent vapors. (a: $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$, b: ammonia, c: Propylamine, d: Butylamine, e: 1,3-Propanediamine, f: Benzylamine).

Figure S9 Emission spectra of $Eu_2Tb_8(HFA)_n@ZY$ after treatment with several amine vapors using an excitation wavelength of 302 nm. $(Eu_2Tb_8(HFA)_n@ZY$ (black line), ammonia (red line), Propylamine (blue line), Butylamine (cyan line), 1,3-Propanediamine (magenta line), Benzylamine (orange line)). Inset: The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of $Eu_2Tb_8(HFA)_n@ZY$ excitated at 302 nm upon treatment with several amine solvent vapors. (a: $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$, b: ammonia, c: Propylamine, d: Butylamine, e: 1,3-Propanediamine, f: Benzylamine).

Figure S10 The enlarged three dimensional PCA score plot for c (Butylamine) and d (1,3-Propanediamine) derived from the luminescence data.

Figure S11 The two dimensional PCA score plot for 1'2-propylenediamine/1'3-propylenediamine derived from the luminescence data.

Figure S12 The two dimensional PCA score plot for propylamine/isopropylamine derived from the luminescence data.

Notably, the sensor array can achieve the identification of two sets of isomers through two dimensional PCA score plot for 1'2-propylenediamine/1'3-propylenediamine derived from the luminescence data.

Figure S13 Emission spectra of $Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ after treatment with ammonia solution with different concentrations using an excitation wavelength of 302 nm. $(2.5 \times 10^{-1} \text{ v/v} \text{ (black line)}, 5 \times 10^{-2} \text{ v/v} \text{ (red line)}, 1 \times 10^{-2} \text{ v/v} \text{ (blue line)}, 2 \times 10^{-3} \text{ v/v} \text{ (dark cyan line)}, 4 \times 10^{-4} \text{ v/v} \text{ (magenta line)}, 2 \times 10^{-4} \text{ v/v} \text{ (dark yellow line)}, 1 \times 10^{-4} \text{ v/v} \text{ (navy line)}, 8 \times 10^{-5} \text{ v/v} (80 \text{ ppm}) \text{ (wine line)}, 1.6 \times 10^{-5} \text{ v/v} \text{ (pink line)}, 3.2 \times 10^{-6} \text{ v/v} \text{ (olive line)}, 0 \text{ (royal line)})). Inset: The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of <math>Eu_{0.5}Tb_{9.5}(HFA)_n@ZY$ excitated at 302 nm upon treatment with ammonia solution with different concentrations. (ammonia concentration in H₂O: a: $2.5 \times 10^{-1} \text{ v/v}$, b: $5 \times 10^{-2} \text{ v/v}$, c: $1 \times 10^{-2} \text{ v/v}$, d: $2 \times 10^{-3} \text{ v/v}$, e: $4 \times 10^{-4} \text{ v/v}$, f: $2 \times 10^{-4} \text{ v/v}$, h: $8 \times 10^{-5} \text{ v/v}$ (80 ppm), i: $1.6 \times 10^{-5} \text{ v/v}$, j: $3.2 \times 10^{-6} \text{ v/v}$, k:0).

Figure S14 Emission spectra of Eu₁Tb₉(HFA)_n@ZY after treatment with ammonia solution with different concentrations using an excitation wavelength of 302 nm. $(2.5 \times 10^{-1} \text{ v/v} \text{ (black line)}, 5 \times 10^{-2} \text{ v/v} \text{ (red line)}, 1 \times 10^{-2} \text{ v/v} \text{ (blue line)}, 2 \times 10^{-3} \text{ v/v} \text{ (dark cyan line)}, 4 \times 10^{-4} \text{ v/v} \text{ (magenta line)}, 2 \times 10^{-4} \text{ v/v} \text{ (dark yellow line)}, 1 \times 10^{-4} \text{ v/v} \text{ (navy line)}, 8 \times 10^{-5} \text{ v/v} (80 \text{ ppm}) \text{ (wine line)}, 1.6 \times 10^{-5} \text{ v/v} \text{ (pink line)}, 3.2 \times 10^{-6} \text{ v/v} \text{ (olive line)}, 0 \text{ (royal line)})). Inset: The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of Eu₁Tb₉(HFA)_n@ZY excitated at 302 nm upon treatment with ammonia solution with different concentrations. (ammonia concentration in H₂O: a: <math>2.5 \times 10^{-1} \text{ v/v}$, b: $5 \times 10^{-2} \text{ v/v}$, c: $1 \times 10^{-2} \text{ v/v}$, d: $2 \times 10^{-3} \text{ v/v}$, e: $4 \times 10^{-4} \text{ v/v}$, f: $2 \times 10^{-4} \text{ v/v}$, h: $8 \times 10^{-5} \text{ v/v}$ (80 ppm), i: $1.6 \times 10^{-5} \text{ v/v}$, j: $3.2 \times 10^{-6} \text{ v/v}$, k:0).

Figure S15 Emission spectra of Eu₂Tb₈(HFA)_n@ZY after treatment with ammonia solution with different concentrations using an excitation wavelength of 302 nm. $(2.5 \times 10^{-1} \text{ v/v} \text{ (black line)}, 5 \times 10^{-2} \text{ v/v} \text{ (red line)}, 1 \times 10^{-2} \text{ v/v} \text{ (blue line)}, 2 \times 10^{-3} \text{ v/v} \text{ (dark cyan line)}, 4 \times 10^{-4} \text{ v/v} \text{ (magenta line)}, 2 \times 10^{-4} \text{ v/v} \text{ (dark yellow line)}, 1 \times 10^{-4} \text{ v/v} \text{ (navy line)}, 8 \times 10^{-5} \text{ v/v} (80 \text{ ppm)} \text{ (wine line)}, 1.6 \times 10^{-5} \text{ v/v} \text{ (pink line)}, 3.2 \times 10^{-6} \text{ v/v} \text{ (olive line)}, 0 \text{ (royal line)})). Inset: The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of Eu₂Tb₈(HFA)_n@ZY excitated at 302 nm upon treatment with ammonia solution with different concentrations. (ammonia concentration in H₂O: a: <math>2.5 \times 10^{-1} \text{ v/v}$, b: $5 \times 10^{-2} \text{ v/v}$, c: $1 \times 10^{-2} \text{ v/v}$, d: $2 \times 10^{-3} \text{ v/v}$, e: $4 \times 10^{-4} \text{ v/v}$, f: $2 \times 10^{-4} \text{ v/v}$, h: $8 \times 10^{-5} \text{ v/v}$ (80 ppm), i: $1.6 \times 10^{-5} \text{ v/v}$, j: $3.2 \times 10^{-6} \text{ v/v}$, k:0).

Figure S16 Digital photographs of $Eu_xTb_y(HFA)_n@ZY$ upon exposed to various volume concentration of 1,3-propanediamine in trimethylamine and 1,3-propanediamine mixed solvents for 5 min (for more sufficient reaction) under near UV irradiation at 302 nm. (the volume concentration of 1,3-propanediamine: **1**: 0, **2**: $5 \times 10^{-4} v/v$, **3**: $1 \times 10^{-3} v/v$, **4**: $2.5 \times 10^{-3} v/v$, **5**: $5 \times 10^{-3} v/v$, **6**: 0.8 v/v, **7**: 1)

Figure S17 Emission spectra of $Eu_2Tb_8(HFA)_n@ZY$ after treatment with different volume concentration of 1,3-propanediamine in trimethylamine and 1,3-propanediamine mixed solvents for 5 min. (trimethylamine: black line, $5 \times 10^{-4} \text{ v/v}$: red line and $1 \times 10^{-3} \text{ v/v}$: blue line). Inset: The relative emission intensity at 612 nm and at 544 nm (I_{Eu}/I_{Tb}) of $Eu_2Tb_8(HFA)_n@ZY$ excitated at 302 nm upon treatment with ammonia solution with volume concentration of 1,3-propanediamine in trimethylamine and 1,3-propanediamine mixed solvents for 5 min. (a: trimethylamine, b: $5 \times 10^{-4} \text{ v/v}$ and c: $1 \times 10^{-3} \text{ v/v}$).

Notably, the single sensing element such as $Eu_2Tb_8(HFA)_n@ZY$ can accomplish the identification of lower concentration of 1,3-propanediamine in trimethylamine and 1,3-propanediamine mixed solvents.

Table S2 The equilibrated vapor pressure of 1,3-propanediamine in trimethylamine.

Figure S18 Diagram of the experimental setup for exposing $Eu_xTb_y(HFA)_n@ZY$ to various amine solvent vapors.

Scheme S1 Detailed process of energy transfer from ligand HFA to Tb³⁺ and Eu³⁺ with the stimulation of amine vapors (EnT: energy transfer, BEnT: energy back transfer).