Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

One-Pot Synthesis of Boron Diketonate Complexes: Photophysical Properties and Sensor for Picric Acid

Seenivasagaperumal Sriram Babu and Sivakumar Shanmugam*

Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India. E-mail: shivazzen@mkuniversity.org

Table of Contents

I. NMR spectra of Compounds 2a, 4, 5, 6a-e (Figure S1-18)	S2
II. Photophysical properties of Boron diketonates 6a-e (Figure S19-30, Table S1)	S11
III. X-ray crystal details of 6e (Figure S31-33, Table S2-5)	S17

I. NMR spectra of Compounds 2a, 4, 5, 6a-e

Fig. S2 ¹³C NMR spectrum of 2a

Fig. S4 ¹H NMR spectrum of 4

Fig. S6 ¹H NMR spectrum of 5

Fig. S7 ¹³C NMR spectrum of 5

Fig. S8 ¹H NMR spectrum of 6a

Fig. S9 ¹³C NMR spectrum of 6a

Fig. S10 ¹H NMR spectrum of 6b

Fig. S11 ¹³C NMR spectrum of 6b

Fig. S12 ¹H NMR spectrum of 6c

Fig. S14 ¹H NMR spectrum of 6d

Fig. S15¹³C NMR spectrum of 6d

Fig. S16 ¹H NMR spectrum of 6e

Fig. S18¹⁹F NMR spectrum of 6e

II. Photophysical properties of Boron diketonates 6a-e

Fig. S19 UV-vis absorption spectra of 6b in Various solvents $(1 \times 10^{-5} \text{ M})$

Fig. S20 Fluorescence spectra of 6b in Various solvents $(1 \times 10^{-5} \text{ M})$

Fig. S21 UV-vis absorption spectra of 6b in toluene at various concentrations

Fig. S22 Change of Fluorescence spectra of **6b** in toluene at various concentrations. Inset shows the graphical change in intensity with increase in concentration of compound **6b**.

Fig. S23 UV-vis absorption spectra of **6a-e** in toluene $(1 \times 10^{-5} \text{ M})$

Fig. S24 Fluorescence spectra of **6a-e** in toluene $(1 \times 10^{-5} \text{ M})$

Fig. S25 Normalized fluorescence spectra of 6a-e in the solid state, excitation at 360 nm.

Table S1 Absorption and Fluorescence properties of 6b in various solvets^a

CI

colvent	$\lambda_{abs}(\varepsilon)$	F_{\max}	Stokes shift	¢. ^b
sorvent	(nm)	(nm)	$[nm/cm^{-1}]$	$arphi_{ m f}$
hexane	351 (59,500)	413	62/4276	0.06
toluene	358 (62,100)	435	77/4944	0.74
CHCl ₃	357 (58,200)	405	48/3319	0.06
CH ₂ Cl ₂	357 (62,300)	420	63/4201	0.22
MeCN	356 (57,800)	405	49/3398	0.04

^{*a*}Measured at a concentration of 1×10^{-5} M. ^{*b*}Determined by comparison with quinine sulfate.

Fig. S26 Photography of boron complexes 6a-e in solid state under (365 nm)

Fig. S27 Fluorescence change of 6e in dichloromethane in the presence of other NACs.

Fig. S28 Calibration plot for detection limit (LOD). The LOD was derived by using the formula 3σ /slope, where σ is the standard deviation of the blank (5 samples) and slope was obtained from linear calibration curve.

Fig. S29 Spectral overlap between absorption spectra of PA and emission spectrum of 6e.

Fig. S30 Fluorescence changes of 6e in dichloromethane in the presence of other NACs coexist with PA.

III. X-ray crystal details of 6e

Fig. S31 X-ray crystal structure of 6e, top view.

Fig. S32 The bond length of C4-C5 and the torsion angle of C3-C4-C5-C10 of 6e.

Fig. S33 Structure (a) and arrangement of the excimer formed by boron diketonate complex **6e** in the crystalline state, view along the a axis (b), the b axis (c) and the c axis (d). Ellipsoids are drawn at the 50% level, hydrogen are shown as sphere of arbitrary radius of 0.30 Å. C, grey; H, white, O, red; B, pink; F, yellow.

Identification code	4bmbf_070616_0m
CCDC number	1510673
Empirical formula	$C_{11}H_{11}BF_2O_3S$
Formula weight	272.07
Temperature	100 K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P -1
Unit cell dimensions	a = 7.9630(18) Å; α = 103.904(4)°.
	b = 8.0155(18) Å; β= 101.576(4)°.
	$c = 10.948(2)$ Å; $\gamma = 113.133(5)^{\circ}$.
Volume	588.7(2) Å ³
Z	2
Density (calculated)	1.535 Mg/m ³
Absorption coefficient	0.296 mm ⁻¹
F(000)	280
Index ranges	-9<=h<=9, -9<=k<=9, -9<=l<=13

Table S2. Crystal data and structure refinement for 6e

Table S3. Bond lengths [Å] for 6e

S(1)-C(2)	1.731(2)
S(1)-C(1)	1.804(2)
F(1)-B(1)	1.381(3)
O(3)-C(11)	1.439(3)
O(3)-C(8)	1.361(2)
C(6)-H(6)	0.950
C(6)-C(7)	1.376(2)
C(6)-C(5)	1.401(3)
C(7)-H(7)	0.950
C(7)-C(8)	1.399(2)
C(9)-H(9)	0.950
C(9)-C(8)	1.390(3)
C(9)-C(10)	1.391(2)
C(5)-C(4)	1.469(2)
C(5)-C(10)	1.393(2)
C93)-H(3)	0.950
C(3)-C(4)	1.377(2)
C(3)-C(2)	1.389(2)
C(11)-H(11A)	0.980
C(11)-H(11B)	0.980
C(11)-H(11C)	0.980
F(2)-B(1)	1.372(3)

B(1)-O(2)	1.478(3)
B(1)-O(1)	1.498(3)
C(4)-O(2)	1.316(2)
C(2)-O(1)	1.297(2)
C(10)-H(10)	0.950
C(1)-H(1A)	0.980
C(1)-H(1B)	0.980
C(1)-H(1C)	0.979

 Table S4. Bond angles [°] for 6e

C(2)-S(1)-C(1)	101.90(9)
C(11)-O(3)-C(8)	117.4(1)
C(7)-C(6)-C(5)	120.9(2)
C(6)-C(7)-H(7)	120.0
C(6)-C(7)-C(8)	119.9(2)
C(8)-C(9)-C(10)	119.0(2)
C(6)-C(5)-C(4)	122.0(1)
C(6)-C(5)-C(10)	118.5(2)
C(4)-C(5)-C(10)	119.5(1)
C(4)-C(3)-C(2)	119.1(2)
O(3)-C(8)-C(7)	115.4(1)
O(3)-C(8)-C(9)	124.3(2)
C(7)-C(8)-C(9)	120.3(2)
F(1)-B(1)-F(2)	111.1(2)

109.4(2)
108.1(2)
109.3(2)
107.9(2)
111.1(2)
124.4(2)
114.7(1)
120.9(2)
119.5(1)
117.6(1)
123.0(2)
122.0(1)
120.1(1)
121.5(2)

Table S5. Torsion angles [°] for 6e

C(1)-S(1)-C(2)-C(3)	-177.9(1)
C(1)-S(1)-C(2)-O(1)	2.9(2)
C(11)-O(3)-C(8)-C(7)	176.4(2)
C(11)-O(3)-C(8)-C(9)	-4.2(2)
H(6)-C(6)-C(7)-H(7)	-0.8
H(6)-C(6)-C(7)-C(8)	179.2
C(5)-C(6)-C(7)-H(7)	179.2
C(5)-C(6)-C(7)-C(8)	-0.8(3)

H(6)-C(6)-C(5)-C(4)	0.5
H(6)-C(6)-C(5)-C(10)	179.7
C(7)-C(6)-C(5)-C(4)	-179.5(2)
C(7)-C(6)-C)5)-C(10)	-0.4(2)
C(6)-C(7)-C(8)-O(3)	-179.4(2)
C(6)-C(7)-C(8)-C(9)	1.2(3)
H(7)-C(7)-C(8)-O(3)	0.6
H(7)-C(7)-C(8)-C(9)	-178.8
H(9)-C(9)-C(8)-O(3)	0.2
H(9)-C(9)-C(8)-C(7)	179.6
C(10)-C(9)-C(8)-O(3)	-179.7(2)
C(10)-C(9)-C(8)-C(7)	-0.4(3)
H(9)-C(9)-C(10)-C(5)	179.2
H(9)-C(9)-C(10)-H(10)	-0.7
C(8)-C(9)-C(10)-C(5)	-0.8(3)
C(8)-C(9)-C(10)-H(10)	179.2
C(6)-C(5)-C(4)-C(3)	-12.7(3)
C(6)-C(5)-C(4)-O(2)	166.4(2)
C(10)-C(5)-C(4)-C(3)	168.1(2)
C(10)-C(5)-C(4)-O(2)	-12.8(2)
C(6)-C(5)-C(10)-C(9)	1.2(3)
C(6)-C(5)-C(10)-H(10)	-178.8
C(4)-C(5)-C(10)-C(9)	-179.7(2)
C(4)-C(5)-C(10)-H(10)	0.3

H(3)-C(3)-C(4)-C(5)	-5.4
H(3)-C(3)-C(4)-O(2)	175.5
C(2)-C(3)-C(4)-C(5)	174.6(2)
C(2)-C(3)-C(4)-O(2)	-4.4(3)
H(3)-C(3)-C(2)-S(1)	5.2
H(3)-C(3)-C(2)-O(1)	-175.7
C(4)-C(3)-C(2)-S(1)	-174.9(1)
C(4)-C(3)-C(2)-O(1)	4.2(3)
F(1)-B(1)-O(2)-C(4)	-98.1(2)
F(2)-B(1)-O(2)-C(4)	140.1(2)
O(1)-B(1)-O(2)-C(4)	21.2(2)
F(1)-B(1)-O(1)-C(2)	99.0(2)
F(2)-B(1)-O(1)-C(2)	-140.8(2)
O(2)-B(1)-O(1)-C(2)	-21.1(2)
C(5)-C(4)-O(2)-B(1)	171.3(2)
C(3)-C(4)-O(2)-B(1)	-9.5(3)
S(1)-C(2)-O(1)-B(1)	-171.2(1)
C(3)-C(2)-O(1)-B(1)	9.7(3)