Supplementary Information

Host-Guest Carbon Dots as High-Performance Fluorescence Probes

Ping Wang,^a Jia-Hui Liu,^{b,*} Haidi Gao,^b Yin Hu,^a Xiaofang Hou,^a Gregory E. LeCroy,^a Christopher E. Bunker,^c Yuanfang Liu,^{d,e} Ya-Ping Sun^{a,*}

^a Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA. E-mail: yaping@clemson.edu.

^b Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: jhliu@mail.buct.edu.cn.

^c Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA. E-mail: christopher.bunker@wpafb.af.mil.

^d Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. E-mail: yliu@pku.edu.cn.

^e Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China. E-mail: yliu@pku.edu.cn.

NMR Results of the NB@CDots in Solution:

Figure S1. The observed ¹H NMR spectrum of the NB@CDots in D_2O , exhibiting only signals due to the PEG moieties, as also highlighted for the chemical shift range of 3.50 - 3.65 ppm in the inset.