Supporting Information

Size-Responsive Phase Transition Mechanism and Upconversion/Downshifting Luminescence Property of KLu₂F₇:Yb³⁺/Er³⁺ Nanocrystals

Xia Xu,^{a,b} Xuesong Zhai,^c Kaimin Du,^{a,d} Pengpeng Lei,^{a,b} Lile Dong,^{a,d} Ruiping Deng,^a Jing Feng, *^a and Hongjie Zhang *^a

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China. E-mail: <u>fengj@ciac.ac.cn</u>; <u>hongjie@ciac.ac.cn</u>; Fax: +86-431-85698041; Tel: +86-431-85262127

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c School of Materials Engineering, Yancheng Institute of Technology, Yancheng
224051, China

^d University of Science and Technology of China, Hefei 230026, China

Fig. S1 XRD patterns of KLu_2F_7 :Yb³⁺/Er³⁺ nanoparticles in the presence of 0, 10, 20, 25 and 30% Mn²⁺ dopant ions, respectively (obtained at 260 °C). The enlarged area showed that the diffraction peak shifts slightly to the higher-angle side as a result of the crystal unit cell contractive due to the substitution of Lu^{3+} ions by smaller Mn²⁺ ions in the host lattice.

Fig. S2 XRD patterns of KLu_2F_7 : Yb³⁺/Er³⁺ nanoparticles in the presence of 0, 10, 15, 20 and 30% Gd³⁺ dopant ions, respectively (obtained at 260 °C). The enlarged area showed that the diffraction peak shifts slightly to the lower-angle side as a result of the crystal unit cell expanded due to the substitution of Lu^{3+} ions by larger Gd³⁺ ions in the host lattice.

Fig. S3 EDS of the KLu₂F₇:Yb³⁺/Er³⁺ nanoparticles (a) un-doped and doped with 20% (b) Mn²⁺, (c) Gd³⁺ and (d) Nd³⁺ ions, respectively (obtained at 260 °C).

Fig. S4 XRD patterns of KLu_2F_7 :Yb³⁺/Er³⁺ nanoparticles obtained at different reaction times (10 min, 40 min and 60 min) (obtained at 260 °C).

Fig. S5 TEM images of KLu_2F_7 : Yb³⁺/Er³⁺ nanoparticles obtained at different reaction times (a) 10 min, (b) 40 min, (c) 60 min and (d) size distribution of KLu_2F_7 : Yb³⁺/Er³⁺ nanoparticles obtained at different reaction times (obtained at 260 °C).

Fig. S6 XRD patterns of KLu_2F_7 : Yb³⁺/Er³⁺ nanoparticles un-doped and doped with 20% Mn²⁺, Gd³⁺ and Nd³⁺ ions, respectively (obtained at 290 °C).

Fig. S7 Size distribution of KLu_2F_7 : Yb³⁺/Er³⁺ nanoparticles (a) un-doped and doped with 20% (b) Mn²⁺, (c) Gd³⁺ and (d) Nd³⁺ ions, respectively (obtained at 290 °C).

Fig. S8 XRD patterns of KLu_2F_7 :Yb³⁺/Er³⁺ nanoplates in the presence of 0, 20, 30 and 40% Mn²⁺ dopant ions, respectively (obtained at 200 °C).

Fig. S9 The size distribution of KLu_2F_7 : Yb³⁺/Er³⁺ nanoparticles (a) un-doped doped with 40% (b) Mn²⁺ and (c) Gd³⁺ ions, respectively (obtained at 200 °C).

Fig. S10 XRD patterns of KLu_2F_7 :Yb³⁺/Er³⁺ nanoplates in the presence of 0, 20, 30 and 40% Gd³⁺ dopant ions, respectively (obtained at 200 °C).

Fig. S11 The double-logarithmic plots of the emission intensity of different transitions of various sized KLu_2F_7 :Yb³⁺/Er³⁺ UCNPs as a function of excitation power, respectively

Fig. S12 (a) Normalized upconversion emission spectra of KLu_2F_7 :Yb³⁺/Er³⁺ nanoparticles with different Mn²⁺ ions dopant concentrations. (b) Red to green emission intensity ratio (I_R/I_G) versus dopant concentration of Mn²⁺ ions.