Supporting information

Core-shell metal fluoride nanoparticles via fluorolytic sol-gel synthesis – a fast and efficient construction kit

B. Ritter¹, P. Haida¹, T. Krahl^{1,2}, G. Scholz¹, E. Kemnitz^{* 1,2}

- ¹ Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor- Str. 2, D-12489 Berlin, Germany
- ² Nanofluor GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
- * Corresponding author: Prof. Dr. E. Kemnitz, Mail: *erhard.kemnitz@chemie.hu-berlin.de*, Phone: +49 30 2093 7555, Fax: +49 30 2093 7277

Contents

Method to calculate the relative shielding effectivity

Figure S1. DLS data of (A) SrF₂:Eu10@*n*×SrF₂ and (B) Ca_{0.25}Sr_{0.75}F₂:Eu10@*n*×Ca_{0.25}Sr_{0.75}F₂ (*n* = 0...3).

Figure S2. PL emission spectra (λ_{ex} = 393 nm) of Ca_{0.25}Sr_{0.75}F₂:Eu10@*n*×Ca_{0.25}Sr_{0.75}F₂ (*n* = 0...3).

Figure S3. PL emission spectra (λ_{ex} = 393 nm) of SrF₂:Eu10 (core), SrF₂:Eu10@CaF₂ and SrF₂:Eu10@SrF₂.

Figure S4. PL emission spectra of SrF_2 :Eu10@2× SrF_2 (5) and SrF_2 :Tb10@2× SrF_2 (6) and the 50:50 mixture (7) excited at 393 nm (left) and 350 nm (right).

Figure S5. PL excitation spectra (λ_{em} = 542 nm, emission of Tb³⁺) (7)...(10).

Figure S6. PL emission spectra (λ_{ex} = 393 nm, excitation of Eu³⁺) of (7)...(10).

Table S1. Calculated and measured DLS and TEM diameters of SrF_2 : Eu10@ $n \times SrF_2$ (n = 0...3).

Table S2. Luminescence lifetimes for SrF_2 :Eu10@ $n \times CaF_2$, SrF_2 :Eu10@ $n \times SrF_2$ and $Ca_{0.25}Sr_{0.75}F_2$:Eu10@ $n \times Ca_{0.25}Sr_{0.75}F_2$ (n = 0...3)

Table S3. Luminescence lifetimes of co-doped core-shell particles for different excitation and emission wavelengths.

Method to calculate the relative shielding efficiency

The radiation-free relaxation of Eu^{3+} in two different spatial directions in a shell causes a reduction of luminescence intensity and lifetime as compared to Eu^{3+} incorporated in the core (Figure 6). This can be described quantitatively by the decay constants k_1 and k_2 of the particles (2) and (3) which can be described as follows:

$$k_1 = \frac{1}{\tau_1} = k_{in} + f_1 k_{nr}$$
 and $k_2 = \frac{1}{\tau_2} = k_{in} + f_2 k_{nr}$

Here k_{in} is the "intrinsic" decay constant of SrF₂:Eu10, f_1 and f_2 are the area-to-volume-ratio of SrF₂:Eu10 part, and k_{nr} is the rate constant of the non-radiative relaxation from SrF₂:Eu10 into the adjacent material SrF₂. The values τ_1 (5.79 ms) and τ_2 (5.19 ms) are measured, f_1 (0.800) and f_2 (0.9952) are calculated from DLS data.

Thus it follows that $k_{in} = 90.86 \text{ s}^{-1}$ and $\tau_{in} = \frac{1}{k_{in}} = 11.01 \text{ ms}^{-1}$. In theory, this "intrinsic lifetime" τ_{in} would be the lifetime of a bulk material SrF₂:Eu10 with a negligible surface area. In practice, not all non-radiative relaxation contributions were considered in this simple model, and hence, the values should not be over-interpreted.

Using this value for k_{in} , the luminescence decay of the particles (1), (2) and (4) is simply modelled as

$$\frac{1}{\tau_i} = k_i = k_{in} + k_{i,shell}$$

where τ_i is the measured lifetime of the decay of Eu³⁺ and $k_{i,shell}$ is the non-radiative relaxation into the shell material. Since all cores have the same size, no surface-to-volume correction coefficient is necessary. Thus, the non-radiative relaxation rate $k_{i,shell}$ can be calculated for the naked core (1) and the shell materials CaF₂ (4) and SrF₂ (2). The lower $k_{i,shell}$ is, the more effective the shell is shielding the core from the solvent.

Figure S1. DLS data of (left) SrF_2 : Eu10@ $n \times SrF_2$ and (right) $Ca_{0.25}Sr_{0.75}F_2$: Eu10@ $n \times Ca_{0.25}Sr_{0.75}F_2$ (n = 0...3).

Figure S2. PL emission spectra (λ_{ex} = 393 nm) of Ca_{0.25}Sr_{0.75}F₂:Eu10@*n*×Ca_{0.25}Sr_{0.75}F₂ (*n* = 0...3).

Figure S3. PL emission spectra (λ_{ex} = 393 nm) of SrF₂:Eu10 (core), SrF₂:Eu10@CaF₂ and SrF₂:Eu10@SrF₂.

Figure S4. PL emission spectra of SrF_2 : Eu10@2×SrF₂ (5) and SrF_2 : Tb10@2×SrF₂ (6) and the 50:50 mixture (7) excited at 393 nm (left) and 350 nm (right). All spectra are normalized to the rare earth content.

Figure S5. PL excitation spectra (λ_{em} = 542 nm, emission of Tb³⁺) (7)...(10). All spectra are normalized to the rare earth content.

Figure S6. PL emission spectra (λ_{ex} = 393 nm, excitation of Eu³⁺) of (7)...(10). All spectra are normalized to the rare earth content.

Table S1. Calculated and measured DLS and TEM diameters of SrF_2 : $Eu10@n \times SrF_2$ ($n = 03$). * The measured core diameter
is used as starting value for the calculation of the expected diameter of the core-shell particles.

sample	calculated diam. [nm] *	DLS diam.[nm]	calculated TEM diam.[nm] *	TEM diam.[nm]
core		7.8		9.1
1 st shell	9.9	10.3		
2 nd shell	11.3	11.4		
3 rd shell	12.4	13.8	14.5	13.7

Table S2. Luminescence lifetimes for SrF_2 : Eu $10@n \times CaF_2$, SrF_2 : Eu $10@n \times SrF_2$ and $Ca_{0.25}Sr_{0.75}F_2$: Eu $10@n \times Ca_{0.25}Sr_{0.75}F_2$ (n = 0...3) (t_1 = lifetime and q_1 = asymmetry parameter).

Samples	Lum. lifetimes	Samples	Lum. lifetimes
SrF ₂ :Eu10	$t_1 2.4 \text{ ms}$ $q_1 1.123$	Ca _{0.25} Sr _{0.75} F ₂ :Eu10	$t_1 2.2 \text{ ms}$ $q_1 1.182$
SrF ₂ :Eu10@SrF ₂	$t_1 5.2 \text{ ms}$ $q_1 1.135$	$Ca_{0.25}Sr_{0.75}F_2:Eu10@Ca_{0.25}Sr_{0.75}F_2$	$t_1 4.3 \text{ ms}$ $q_1 1.194$
SrF ₂ :Eu10@2×SrF ₂	$t_1 6.2 \text{ ms}$ $q_1 1.115$	$Ca_{0.25}Sr_{0.75}F_2:Eu10@2{\times}Ca_{0.25}Sr_{0.75}F_2$	$t_1 5.3 \text{ ms}$ $q_1 1.167$
SrF ₂ :Eu10@3×SrF ₂	$t_1 6.6 \text{ ms}$ $q_1 1.097$	Ca _{0.25} Sr _{0.75} F ₂ :Eu10@3×Ca _{0.25} Sr _{0.75} F ₂	$t_1 6.0 ms$ $q_1 1.137$
SrF ₂ :Eu10@CaF ₂	<i>t</i> ₁ 2.6 ms <i>q</i> ₁ 1.180		
SrF ₂ :Eu10@2×CaF ₂	<i>t</i> ₁ 2.9 ms <i>q</i> ₁ 1.212		

Table S3. Luminescence lifetimes of co-doped core-shell particles for different excitation and emission wavelengths.

Sample	Tb ³⁺ →Tb ³⁺	Eu ³⁺ →Eu ³⁺
	ex 350 nm em 542 nm	ex 393 nm em 698 nm
(5)	-	4.34
(6)	5.24	-
(7)	5.17	4.31
(8)	3.11	5.22
(9)	2.92	3.31
(10)	2.17	4.91