Supporting Information

Kirigami-Patterned Highly Stretchable Conductors from Flexible Carbon Nanotubes-Embedded Polymer Films

Zhihui Wang, Ling Zhang*, Shasha Duan, Hao Jiang, Jianhua Shen, Chunzhong Li*

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.

E-mail: zlingzi@ecust.edu.cn (L. Zhang), czli@ecust.edu.cn (C. Li). Tel: +86-21-64252055, Fax: +86-21-64250624.

Figure S1. a) The surface and b) cross-section SEM images of the composite film with

CNTs coated on the surface of PDMS.

Figure S2. The stress-strain curves of KSCF varying characteristic parameters: a) cut length; b) transverse spacing; c) vertical spacing; d) cut numbers.

variable	classification	L(mm)	x (mm)	y (mm)	N	Μ
	$KSCF_{L1}$	1	0.5	0.5	3	20
L	KSCF _{L3}	3	0.5	0.5	3	20
	KSCF _{L5}	5	0.5	0.5	3	20
	KSCF _{x0.5}	5	0.5	0.5	3	20
X	KSCF _{x1.5}	5	1.5	0.5	3	20
	KSCF _{x2.5}	5	2.5	0.5	3	20
	KSCF _{y0.5}	5	0.5	0.5	3	20
У	KSCF _{y1.5}	5	0.5	1.5	3	20
	KSCF _{y2.5}	5	0.5	2.5	3	20
	KSCF _{N1}	5	0.5	0.5	1	20
Ν	KSCF _{N2}	5	0.5	0.5	2	20
	KSCF _{N3}	5	0.5	0.5	3	20
	KSCF _{M10}	5	0.5	0.5	3	10
М	KSCF _{M15}	5	0.5	0.5	3	15
	KSCF _{M20}	5	0.5	0.5	3	20

 Table S1 Dimensions and geometry of the cut patterns in details.

Figure S3. a) The surface and b) cross-section SEM images of the O-KSCF film stretched to 380% strain.

Figure S4. a) the stress-strain curve of a flat CNTs/PDMS film; b) the normalized resistance change as a function of tensile strain.

Figure S5. Normalized resistance of the O-KSCF as a function of a) the bending cycles at 180° and b) the twisting cycles at 360°.

Figure S6. The thickness of CNT layer and PDMS film.

conductors compared with other patterned conductors.									
pattern	materials	structured	elongation	initial	resistance				
		method		conductivity	variations				
serpentine [1]	graphene	photolithography	106%	4 layers:	no				
		and reactive ion		$\sim 480 \ \Omega/sq$	noticeable				
		etching patterns			changes				
wavy ^[2]	carbon	pre-strain	100%	211 Ω/sq	4.1%				
	nanotube								
porous	copper	freeze-drying	60%	0.29 S/cm	19.5%				
aerogel ^[3]	nanowire								
nanomesh ^[4]	gold	grain boundary	160%	20~30 Ω/sq	150%				
		lithography and							
		pre-strain							
honeycomb ^[5]	gold	lithography	50%	$0.055 \ \Omega/mm^2$	~600%				
sponge ^[6]	metal	commercial PU	40-45%	1.55~8.67Ω/sq	negligible				
					changes				
kirigami	carbon	laser cutting	430%	13.05 Ω/sq	<20%				
(our work)	nanotube								

 Table S2 Mechanical and electrical properties of kirigami-patterned stretchable

 conductors compared with other patterned conductors

References

- R. -H. Kim, M. -H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D. -H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. G. Huang, E. Pop, and John A. Rogers, *Nano Lett.*, 2011, 11, 3881–3886.
- 2. F. Xu, X. Wang, Y. T. Zhu, and Y. Zhu, Adv. Funct. Mater., 2012, 22, 1279-1283.
- 3. Y. Tang, S. Gong, Y. Chen, L. W. Yap, and W. L. Cheng, ACS Nano, 2014, 8, 5707-5714.
- 4. C. F. Guo, Y. Chen, L. Tang, F. Wang, and Z. F. Ren, Nano Lett., 2016, 16, 594-600.
- 5. B. Kim, J. Jang, I. You, J. Park, S. Shin, G. Jeon, J. K. Kim, and U. Jeong, ACS Appl. Mater. Interfaces, 2015, 7, 7920–7926.
- 6. Y. Yu, J. F. Zeng, C. J. Chen, Z. Xie, R. S. Guo, Z. L. Liu, X. C. Zhou, Y. Yang, and Z. J. Zheng, *Adv. Mater.*, 2014, **26**, 810–815.