Electronic Supporting Information

Highly Selective and Fast-Response Photoluminescence Humidity Sensor Based on F⁻ Decorated NH₂-MIL-53(AI) Nanorods

Ting Lu, Hongjie Song, Xiaoqun Dong, Jianyu Hu, Yi Lv*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.

E-mail: lvy@scu.edu.cn; Fax: +86 28 85412798; Tel: +86 28 85412798

Fig. S1 Photographs of the home-made sensing cell with different thickness of the films (left) and photograph of the optical path device (right).

Fig. S2 SEM images of NH₂-MIL-53(AI) synthesized with (A) 1.4 mmol NaF and (B) 1.4 mmol HCI.

Fig. S3 (A) XPS spectra of NH_2 -MIL-53(Al) nanoparticles. (B) High-resolution XPS spectra of Al 2p.

Fig. S4 The sensor based on NH_2 -MIL-53(Al) nanorods layer response towards 40 μ g mL⁻¹ water at different flow rate.

Fig. S5 Fluorescence spectra of NH₂-MIL-53(AI) nanorods, NH₂-MIL-53(AI) nanoparticles and NH₂-H₂BDC.

Fig. S6 Fluorescence emission spectra of NH₂-MIL-53(AI) nanorods before and after reaction.

Fig. S7 The effect of O_2 on the fluorescence intensity of NH_2 -MIL-53(Al) nanorods.

Fig. S8 The effect of N_2 on the fluorescence intensity of NH_2 -MIL-53(Al) nanorods.

Fig. S9 The PL lifetime of NH₂-MIL-53(Al) nanorods before and after the reaction with water vapor.

