Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Efficient Solid-State Perovskite Solar Cells Based on Nanostructured Zinc Oxide

Designed by Strategic Low Temperature Water Oxidation

Christian Mark Pelicano* and Hisao Yanagi

Graduate School of Materials Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192 Japan

*Author Correspondence: christian.pelicano.ce0@ms.naist.jp

Table S1. Materials and photovoltaic parameters of perovskite solar cells based on ZnO or TiO_2 as electron-transporting layers.

ETL	Perovskite	HTL	<i>V_{oc}</i> (eV)	PCE _{max} (%)	Ref.
ZnO nanorods	CH ₃ NH ₃ PbI ₃	P3HT	0.82	5.96	This work
ZnO nanorods	CH ₃ NH ₃ PbI ₃	P3HT	0.56	3.05	[1]
ZnO nanorods/TiO ₂ nanoparticle	CH ₃ NH ₃ PbI ₃	РЗНТ	0.50	3.41	[1]
TiO ₂ compact film	CH ₃ NH ₃ PbI ₃	P3HT	0.64	4.24	[2]
ZnO nanowires	CH ₃ NH ₃ PbI ₃	РЗНТ	0.79	4.8	[3]
TiO ₂ compact film	CH ₃ NH ₃ PbI ₃	РЗНТ	0.64	5.67	[4]
TiO ₂ compact film	CH ₃ NH ₃ PbI _{3-x} Cl _x	РЗНТ	0.74	6.06	[5]
ZnO film	CH ₃ NH ₃ PbI _{3-x} Cl _x	РЗНТ	1.04	6.3	[6]

Table S2. Summary of photovoltaic parameters recorded for perovskite solar cells based on nanostructured ZnO formed by wet oxidation under varying oxidation time at 90°C, under 1 Sun illumination (AM 1.5G, 100 mW cm⁻²)

Time [h]	Scan Direction	J _{sc} [mA cm ⁻²]	Voc [eV]	FF	PCE _{ave} [%]	PCE _{max} [%]
2	Forward	13.0	0.591	0.36	1.57	2.77
	Reverse	12.9	0.456	0.38	2.04	2.28
4	Forward	16.4	0.528	0.37	2.88	3.24
	Reverse	16.5	0.521	0.38	2.62	3.23
8	Forward	16.5	0.820	0.44	5.28	5.96
	Reverse	18.0	0.780	0.42	5.46	5.91
16	Forward	13.6	0.771	0.42	4.00	4.42
	Reverse	12.8	0.787	0.42	3.69	4.23
24	Forward	10.1	0.799	0.42	2.94	3.40
	Reverse	9.43	0.809	0.41	2.72	3.14

Fig. S1. (a) Optical transmission spectra of ITO and wet oxidized ZnO nanostructures grown at different oxidation times.(b) Photoluminescence spectra of the corresponding ZnO samples.

Fig. S2. (a) XRD pattern and (b) optical absorption spectrum of perovskite film on top of 8h-ZnO sample.

Fig. S3. (a) Optical transmission spectra of ITO and wet oxidized ZnO nanostructures grown at different growth temperatures. (b) Photoluminescence spectra of the corresponding ZnO samples.

References:

[1] P. Ruankhama, D. Wongratanaphisan, A. Gardchareon, Surachet Phadungdhitidhada, S. Choopun, T. Sagawa, *Appl. Surf. Sci.*, 2017, **410**, 393-400.

[2] P. Nagarjuna, K. Narayanaswamy, T. Swetha, G. Hanumantha Rao, S. P. Singh, G.D. Sharma, *Electrochim. Acta*, 2015, **151**, 21-26.

[3] Md. M. Rahman, N. Uekawa, F. Shiba, Y. Okawa, M. Sakai, K. Yamamoto, K. Kudo, T. Konishi, *Jpn. J. Appl. Phys.*, 2016, **55**, 01AE09.

[4] M. Seetharaman S, P. Nagarjuna, P. N. Kumar, S. P. Singh, M. Deepac, M. A. G.

Namboothiry, Phys. Chem. Chem. Phys., 2014, 16, 24691.

[5] Y. Zhang, W. Liu, F. Tan, Y. Gu, J. Power Sources, 2015, 274, 1224-1230

[6] Z. Qiu, S. Yuan, H. Gong, H. Zhang, X. Qiu, T. Luo, B. Cao, J. Am. Ceram. Soc., 2016, 1-7.