Supporting Information

Control of the morphology of PbI_2 films for efficient perovskite solar cells by strong Lewis base additives

Xiaobing Cao,^a Lili Zhi,^b Yahui Li,^a Fei Fang,^{a,c} Xian Cui, ^a Youwei Yao,^c Lijie Ci,^b Kongxian Ding,^d Jinquan Wei^a*

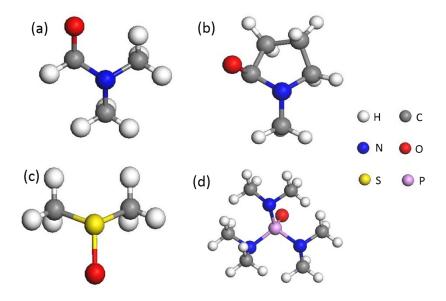
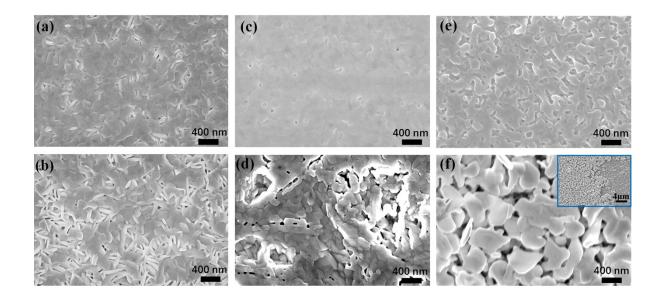
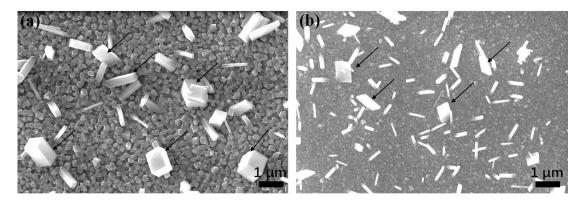
^aState Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China

^bSchool of Materials Science & Engineering, Shandong University, Jinan 250061, Shandong, P.R. China

^cInstitute of Advanced Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China

^dShenzhen Jiawei Solar Lighting Co., Ltd., Fuping Road New Industrial Zone No. 1-4, Longgang District, Shenzhen 518112, Guangdong, P.R. China

*E-mail: jqwei@tsinghua.edu.cn

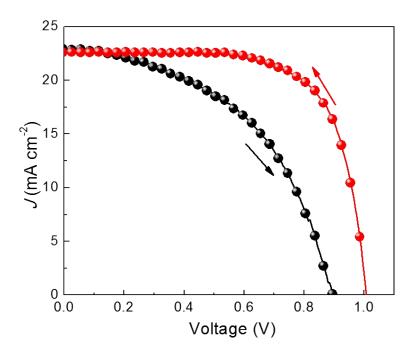

Figure S1 Molecule structure of the solvents. (a) DMF, (b) NMP, (c) DMSO, (d) HMPA

Figure S2. SEM images of the PbI₂ films fabricated from PbI₂/DMF solution with different Lewis base additives after annealing. (a) 10% NMP, (b) 20% NMP, (c) 10% DMSO, (d) 30% DMSO, (e) 2% HMPA, (f) 10% HMPA. Too much or too little additives (NMP, DMSO, or HMPA) in the PbI₂/DMF solution will significantly reduce pore structure, or lead to too many pores and even forming discontinuous films. Inset is a low magnification SEM image of the PbI₂ film fabricated from 10% HMPA, showing a discontinuous film.

Figure S3. SEM images of perovskite film fabricated from different reaction times and MAI concentrations in the 2-isopropyl (IPA) solution. (a) Reaction for 20 min in 10 mg mL⁻¹ MAI/IPA solution, (b) reaction for 10 min in 12 mg mL⁻¹ MAI/IPA solution. Iodine-rich environment at the surface of perovskite film can provide driving force for the growth of cublike MAPbI₃ (as shown by arrows) via dissolution and recrystallization growth process, which leads to rough surface the perovskite films.

Figure S4. Hysteresis behaviors of a perovskite solar cell fabricated from solution with 20% DMSO additive. The perovskite solar cells exhibit typical hysteresis behaviors. There is obvious discrepancy between forward scan (dark line) and reverse scan (red line) density-voltage (*J-V*) curves.

Table S1 The statistical photovoltaic parameters of PSCs fabricated from different Lewis basicity solutions

Samples	$J_{ m sc}$ (mA cm ⁻²)	V _{oc} (V)	FF	PCE (%)
Pure DMF	19.48±1.34	0.97±0.02	0.57±0.04	10.47±1.13
30% NMP	20.36±1.10	0.98 ± 0.01	0.65±0.03	13.10±0.82
20% DMSO	22.24±0.65	0.99±0.01	0.66 ± 0.02	14.68±0.82
5% HMPA	18.32±1.23	0.92 ± 0.03	0.59±0.05	10.11±1.21