Electronic Supplementary Information

High-Performance photodetector based on inorganic

perovskite-ZnO heterostructure

Heng Liu,^{ab} Xingwang Zhang,^{*ab} Liuqi Zhang,^{ab} Zhigang Yin,^{ab} Denggui Wang,^{ab} Junhua Meng,^{ab} Qi Jiang,^{ab} Ye Wang^{ab} and Jingbi You^{ab}

^aKey Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China

^bCollege of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Corresponding author. E-mail:<u>xwzhang@semi.ac.cn</u>

Fig. S1 Cross-sectional SEM image of the pristine CsPbBr₃ film on the glass substrate. It shows a similar thickness and morphology as on the ZnO layer.

Fig. S2 Normalized high-resolution photoresponse of the reference CsPbBr₃ photodetector. The rise time and decay time of the reference CsPbBr₃ photodetector are determined to be 130 and 150 µs, respectively.

Fig. S3 SEM images of the pristine $CsPbBr_3$ films on the glass substrates synthesized from the $CsBr:PbBr_2$ ratios of (a) 0.5, (b) 1.0, (c) 1.5, and (d) 2.0. The pristine $CsPbBr_3$ films deposited on glass showed nearly similar morphology as on the ZnO layer.

Fig. S4 (a) XRD spectrum and (b) SEM image of the CsPbBr₃/ZnO films prepared from the solution with the CsBr:PbBr₂ ratio of 3.0. Solid squares (\blacksquare) represent the peaks from the Cs₄PbBr₆ impurity phase. We suspect that the white particles observed in Figure S4b are Cs₄PbBr₆ grains.