## Fast and slow integrated single-molecule

## dual dielectric switch based on crystal/flexible thin film



Chang Xu, Wan-Ying Zhang, Cheng Chen, Qiong Ye\*, Da-Wei Fu\*

**Fig. S1** Infrared spectrum of compound **1** (a) and **2** (b). Description: The IR spectrums of **1** and **2** definitely show the existence of typical strong stretching vibration peaks of C-N at 1000-1200 cm<sup>-1</sup>, the C-Cl stretching vibration at 600-800 cm<sup>-1</sup>, and the N-H/C-H stretching vibration at 2800-3200 cm<sup>-1</sup>. In addition, the finger-print region of about 3200-3500 cm<sup>-1</sup> may belong to the stretching vibration of O-H, which serves as indirect proof to the crystalline structure we have obtained.



Fig. S2 (a) TGA curves for 1 (red) and 2 (green). (b) DSC curves of 1 and 2 obtained on a cooling-heating cycle from LTP to RTP.



Fig. S3 The scanning electron microscopy (SEM) topography of compound 2.



**Fig. S4** Crystal-packing views of compound **2** at LTP (103 K) and RTP (293 K), while other atoms omitted for clarity.



**Fig. S5** Schematic presentations of the positions of N and Mn atoms in (a) LTP at 103 K, (b) RTP at 293 K, and (c) HTP, while other atoms omitted for clarity. The presentation of HTP is a hypothetical state based upon the space group.



**Fig. S6** Variable-temperature PXRD patterns of **1**, the right picture showed the contrast of plastic phase and ordered phase.



**Fig. S7** Variable-temperature PXRD patterns of **2**, the right picture showed the contrast of plastic phase and ordered phase.



**Fig. S8** Pawley refinement on the PXRD patterns of compound **1** and **2** at 413 K. Experimental pattern (green line), calculated pattern (red line), the appointed unit-cell parameters and space group are got through the calculated peak positions.



Fig. S9 (a) Real part ( $\varepsilon'$ ) of the dielectric permittivity of Compound 2 as a function of temperature at various frequencies on cooling process for the polycrystalline sample; (b) imaginary part ( $\varepsilon''$ ) of the dielectric permittivity measured at different frequencies on cooling course for the polycrystalline sample; (c) Arrhenius plots for the dielectric relaxation on cooling. (d) Cole-Cole diagrams of  $\varepsilon''$  versus  $\varepsilon'$  for the polycrystalline sample of 2 at three selected temperatures, which shows the relaxation nature of the dielectric dispersion in compound 2. (e) Temperature-dependence of the real part ( $\varepsilon'$ ) of the polycrystalline samples of 2 at 1 MHz upon heating and cooling.



**Fig. S10** (a) Anisotropic dielectric permittivity ( $\varepsilon'$ ) of **2** along the a, b, and c axes at 1000 KHz upon heating. (b) Temperature-dependent real part ( $\varepsilon'$ ) of the dielectric constant of compound **2**, measured along the a-axis in the frequency range 0.5-1000 KHz upon heating.



Fig. S11  $\varepsilon$ '-switching of crystal 2 is completely reversible without wastage after at least four "on"/"off" cycles along a-axis at frequencies of 1 MHz.



Fig. S13 Temperature-dependence of the real part ( $\varepsilon'$ ) of the flexibility thin films samples of 2 at 1 MHz upon heating and cooling.

|                                   | $[C_{3}H_{9}Cl_{2}NO]_{2}[CdCl_{4}]$ (1) |                             | $[C_{3}H_{9}Cl_{2}NO]_{2}[MnCl_{4}]$ (2) |                             |
|-----------------------------------|------------------------------------------|-----------------------------|------------------------------------------|-----------------------------|
| Temperature(K)                    | RTP(293K)                                | LTP(103K)                   | RTP(293K)                                | LTP(103K)                   |
| Empirical formula                 | $C_{12}H_{30}Cl_6CdN_2O_2$               | $C_{12}H_{30}Cl_6CdN_2O$    | $C_{12}H_{30}Cl_6MnN_2O_2$               | $C_{12}H_{30}Cl_6MnN_2O_2$  |
| Formula weight                    | 558.47                                   | 558.47                      | 502.02                                   | 502.02                      |
| Crystal system                    | Monoclinic                               | Monoclinic                  | Monoclinic                               | Monoclinic                  |
| Space group                       | C2/c                                     | C2/c                        | C2/c                                     | C2/c                        |
| <i>a</i> (Å)                      | 16.440 (3)                               | 16.407 (14)                 | 16.394 (16)                              | 16.287 (12)                 |
| <i>b</i> (Å)                      | 9.787 (2)                                | 9.691 (7)                   | 9.763 (9)                                | 9.623 (7)                   |
| <i>c</i> (Å)                      | 15.935 (3)                               | 15.708 (13)                 | 15.901 (15)                              | 15.636 (12)                 |
| $\alpha$ (deg)                    | 90.00                                    | 90.00                       | 90.00                                    | 90.00                       |
| $\beta$ (deg)                     | 113.23 (3)                               | 113.897 (13)                | 112.971 (14)                             | 113.41 (4)                  |
| γ (deg)                           | 90.00                                    | 90.00                       | 90.00                                    | 90.00                       |
| Volume (Å <sup>3</sup> )          | 2356.1 (8)                               | 2283 (3)                    | 2343 (4)                                 | 2249 (3)                    |
| Radiation type                    | Μο-Κα                                    | Μο-Κα                       | Μο-Κα                                    | Μο-Κα                       |
| Absorption correction             | Multi-scan                               | Multi-scan                  | Multi-scan                               | Multi-scan                  |
| Z, Calculated density             | 4, 1.577 Mg m <sup>-3</sup>              | 4, 1.624 Mg m <sup>-3</sup> | 4, 1.423 Mg m <sup>-3</sup>              | 4, 1.483 Mg m <sup>-3</sup> |
| <i>F</i> (000)                    | 1128                                     | 1124                        | 1036                                     | 1036                        |
| T <sub>min/max</sub>              | 0.964/0.970                              | 0.9/1.0                     | 0.964/0.970                              | 0.9/1.0                     |
| Goodness-of-fit on F <sup>2</sup> | 1.052                                    | 1.059                       | 1.122                                    | 1.131                       |
| $R_1 [I > 2s(I)]$                 | 0.076                                    | 0.076                       | 0.092                                    | 0.079                       |
| $wR_2 [I > 2s(I)]$                | 0.215                                    | 0.237                       | 0.346                                    | 0.295                       |

Table S1Summary of crystallographic data for compounds 1 and 2

| Bond lengths / $Å$ and bond angles / ° |            |                     |            |  |
|----------------------------------------|------------|---------------------|------------|--|
| Cd(1)-Cl(1)                            | 2.459(4)   | Cd(1)-Cl(1)#1       | 2.459(4)   |  |
| Cd(1)-Cl(2)                            | 2.447(3)   | Cd(1)-Cl(2)#1       | 2.447(3)   |  |
| Cl(3)-C(1)                             | 1.727(14)  | C(1)-C(2)           | 1.496(17)  |  |
| C(3)-C(2)                              | 1.42(2)    | N(1)-C(3)           | 1.483(14)  |  |
| N(1)-C(4)                              | 1.480(18)  | N(1)-C(5)           | 1.493(18)  |  |
| N(1)-C(6)                              | 1.426(18)  | C(2)-O(1)           | 1.57(2)    |  |
|                                        |            |                     |            |  |
| Cl(1)-Cd(1)-Cl(1)#1                    | 110.6(2)   | Cl(1)#1-Cd(1)-Cl(2) | 107.91(14) |  |
| Cl(1)#1-Cd(1)-Cl(2)#1                  | 110.89(17) | Cl(1)-Cd(1)-Cl(2)   | 110.89(17) |  |
| Cl(1)-Cd(1)-Cl(2)#1                    | 107.91(14) | Cl(2)#1-Cd(1)-Cl(2) | 108.63(18) |  |
| C(3)-N(1)-C(5)                         | 113.1(11)  | C(3)-N(1)-C(4)      | 110.9(13)  |  |
| C(3)-N(1)-C(6)                         | 107.0(12)  | C(5)-N(1)-C(4)      | 107.9(12)  |  |
| C(4)-N(1)-C(6)                         | 108.9(11)  | C(5)-N(1)-C(6)      | 109.0(13)  |  |
| C(2)-C(1)-Cl(3)                        | 113.7(11)  | O(1)-C(2)-C(1)      | 102.8(14)  |  |
| N(1)-C(3)-C(2)                         | 119.4(14)  | C(3)-C(2)-O(1)      | 102.7(14)  |  |
| C(3)-C(2)-C(1)                         | 114.0(14)  |                     |            |  |

Table S2Selected structural data for 1 under 103K

Symmetry transformations used to generate equivalent atoms: #1 - x+1, y, -z+1/2.

| Bond lengths / $\AA$ and bond angles / $^{\circ}$ |             |                     |            |  |
|---------------------------------------------------|-------------|---------------------|------------|--|
| Cd(1)-Cl(1)                                       | 2.4481 (12) | Cd(1)-Cl(1)#1       | 2.4481(12) |  |
| Cd(1)-Cl(2)                                       | 2.4336 (11) | Cd(1)-Cl(2)#1       | 2.4336(11) |  |
| Cl(3)-C(1)                                        | 1.769(2)    | Cl(3A)-C(1A)        | 1.772(3)   |  |
| C(1)-C(2)                                         | 1.523(3)    | C(1A)-C(2A)         | 1.515(3)   |  |
| C(3)-C(2)                                         | 1.502(4)    | C(3A)-C(2A)         | 1.479(5)   |  |
| N(1)-C(3)                                         | 1.504(3)    | N(1A)-C(3A)         | 1.502(4)   |  |
| N(1)-C(4)                                         | 1.500(4)    | N(1A)-C(4A)         | 1.502(4)   |  |
| N(1)-C(5)                                         | 1.508(5)    | N(1A)-C(5A)         | 1.505(6)   |  |
| N(1)-C(6)                                         | 1.493(5)    | N(1A)-C(6A)         | 1.493(5)   |  |
| C(2)-O(1)                                         | 1.507(4)    | C(2A)-O(1A)         | 1.496(5)   |  |
|                                                   |             |                     |            |  |
| Cl(1)-Cd(1)-Cl(1)#1                               | 111.16(6)   | Cl(1)#1-Cd(1)-Cl(2) | 107.15(4)  |  |
| Cl(1)#1-Cd(1)-Cl(2)#1                             | 111.25(4)   | Cl(1)-Cd(1)-Cl(2)   | 111.25(4)  |  |
| Cl(1)-Cd(1)-Cl(2)#1                               | 107.15(4)   | Cl(2)#1-Cd(1)-Cl(2) | 108.90(5)  |  |

| C(3)-N(1)-C(5)  | 110.9(3)   | C(5A)-N(1A)-C(3A)  | 95.5(3)  |
|-----------------|------------|--------------------|----------|
| C(3)-N(1)-C(4)  | 115.6(4)   | C(4A)-N(1A)-C(3A)  | 146.4(5) |
| C(3)-N(1)-C(6)  | 92.4(3)    | C(6A)-N(1A)-C(3A)  | 105.8(3) |
| C(5)-N(1)-C(4)  | 105.0(3)   | C(4A)-N(1A)-C(5A)  | 102.6(5) |
| C(4)-N(1)-C(6)  | 123.9(3)   | C(4A)-N(1A)-C(6A)  | 91.2(5)  |
| C(5)-N(1)-C(6)  | 108.6(4)   | C(5A)-N(1A)-C(6A)  | 116.4(4) |
| C(2)-C(1)-Cl(3) | 113.41(18) | C(2A)-C(1A)-Cl(3A) | 114.6(2) |
| O(1)-C(2)-C(1)  | 108.3(3)   | O(1A)-C(2A)-C(1A)  | 108.5(3) |
| N(1)-C(3)-C(2)  | 115.2(2)   | C(2A)-C(3A)-N(1A)  | 91.2(2)  |
| C(3)-C(2)-O(1)  | 107.2(2)   | C(3A)-C(2A)-O(1A)  | 111.5(4) |
| C(3)-C(2)-C(1)  | 108.7(2)   | C(3A)-C(2A)-C(1A)  | 110.6(2) |

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, y, -z + 1/2.

| Bond lengths / $Å$ and bond angles / ° |            |                     |            |  |
|----------------------------------------|------------|---------------------|------------|--|
| Mn(1)-Cl(1)                            | 2.351(2)   | Mn(1)-Cl(1)#1       | 2.351(2)   |  |
| Mn(1)-Cl(2)                            | 2.367(2)   | Mn(1)-Cl(2)#1       | 2.367(2)   |  |
| Cl(3)-C(1)                             | 1.726(8)   | C(1)-C(2)           | 1.571(11)  |  |
| C(3)-C(2)                              | 1.423(15)  | N(1)-C(3)           | 1.537(11)  |  |
| N(1)-C(4)                              | 1.545(10)  | N(1)-C(5)           | 1.452(13)  |  |
| N(1)-C(6)                              | 1.476(10)  | C(2)-O(1)           | 1.419(13)  |  |
|                                        |            |                     |            |  |
| Cl(1)-Mn(1)-Cl(1)#1                    | 109.58(12) | Cl(1)#1-Mn(1)-Cl(2) | 109.83(10) |  |
| Cl(1)#1-Mn(1)-Cl(2)#1                  | 108.53(9)  | Cl(1)-Mn(1)-Cl(2)   | 108.53(9)  |  |
| Cl(1)-Mn(1)-Cl(2)#1                    | 109.83(10) | Cl(2)#1-Mn(1)-Cl(2) | 110.55(14) |  |
| C(3)-N(1)-C(5)                         | 106.2(8)   | C(3)-N(1)-C(4)      | 113.2(7)   |  |
| C(3)-N(1)-C(6)                         | 113.3(6)   | C(5)-N(1)-C(4)      | 109.0(6)   |  |
| C(4)-N(1)-C(6)                         | 105.4(7)   | C(5)-N(1)-C(6)      | 109.8(8)   |  |
| C(2)-C(1)-Cl(3)                        | 106.6(6)   | O(1)-C(2)-C(1)      | 110.5(8)   |  |
| N(1)-C(3)-C(2)                         | 118.0(9)   | C(3)-C(2)-O(1)      | 110.5(8)   |  |
| C(3)-C(2)-C(1)                         | 106.3(8)   |                     |            |  |

## Table S4Selected structural data for 1 under 103K

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z+1/2.

| Table S5 | Selected | structural | data | for 2 | 2 under | 293K |
|----------|----------|------------|------|-------|---------|------|
|          |          |            |      |       |         |      |

| Bond lengths / $Å$ and bond angles / ° |             |               |            |  |
|----------------------------------------|-------------|---------------|------------|--|
| Mn(1)-Cl(1)                            | 2.3591 (17) | Mn(1)-Cl(1)#1 | 2.3591(17) |  |
| Mn(1)-Cl(2)                            | 2.3756 (19) | Mn(1)-Cl(2)#1 | 2.3756(19) |  |

| Cl(3)-C(1)            | 1.766 (4)  | Cl(3A)-C(1A)        | 1.7458(4)  |
|-----------------------|------------|---------------------|------------|
| C(1)-C(2)             | 1.519 (4)  | C(1A)-C(2A)         | 1.551(4)   |
| C(3)-C(2)             | 1.489 (5)  | C(3A)-C(2A)         | 1.469(5)   |
| N(1)-C(3)             | 1.488 (4)  | N(1A)-C(3A)         | 1.521(4)   |
| N(1)-C(4)             | 1.496 (6)  | N(1A)-C(4A)         | 1.493(5)   |
| N(1)-C(5)             | 1.494 (6)  | N(1A)-C(5A)         | 1.496(6)   |
| N(1)-C(6)             | 1.501 (6)  | N(1A)-C(6A)         | 1.508(6)   |
| C(2)-O(1)             | 1.499 (5)  | C(2A)-O(1A)         | 1.487(5)   |
|                       |            |                     |            |
| Cl(1)-Mn(1)-Cl(1)#1   | 109.15 (8) | Cl(1)#1-Mn(1)-Cl(2) | 110.78(8)  |
| Cl(1)#1-Mn(1)-Cl(2)#1 | 107.99 (8) | Cl(1)-Mn(1)-Cl(2)   | 107.99(8)  |
| Cl(1)-Mn(1)-Cl(2)#1   | 110.78 (8) | Cl(2)#1-Mn(1)-Cl(2) | 110.16(9)  |
| C(3)-N(1)-C(5)        | 102.6 (4)  | C(5A)-N(1A)-C(3A)   | 98.8(4)    |
| C(3)-N(1)-C(4)        | 126.8 (4)  | C(4A)-N(1A)-C(3A)   | 101.4(4)   |
| C(3)-N(1)-C(6)        | 115.3 (4)  | C(6A)-N(1A)-C(3A)   | 111.6(3)   |
| C(5)-N(1)-C(4)        | 117.4 (4)  | C(4A)-N(1A)-C(5A)   | 97.7(6)    |
| C(4)-N(1)-C(6)        | 82.2 (5)   | C(4A)-N(1A)-C(6A)   | 126.3(5)   |
| C(5)-N(1)-C(6)        | 111.4 (5)  | C(5A)-N(1A)-C(6A)   | 116.7(6)   |
| C(2)-C(1)-Cl(3)       | 114.7 (3)  | C(2A)-C(1A)-Cl(3A)  | 112.04(18) |
| O(1)-C(2)-C(1)        | 109.3 (4)  | O(1A)-C(2A)-C(1A)   | 106.4(3)   |
| N(1)-C(3)-C(2)        | 115.2 (3)  | C(2A)-C(3A)-N(1A)   | 109.8(3)   |
| C(3)-C(2)-O(1)        | 111.0 (3)  | C(3A)-C(2A)-O(1A)   | 111.9(4)   |
| C(3)-C(2)-C(1)        | 108.0 (3)  | C(3A)-C(2A)-C(1A)   | 110.9(3)   |
|                       |            |                     |            |

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z+1/2.