Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Preparation of efficient oligomer-based bulk-heterojunction solar cells with eco-friendly solvents

Duško Popović,^a Ibrahim Ata,^a Johannes Krantz,^a Sebastian Lucas,^a Mika Lindén,^b Elena Mena-Osteritz^a and Peter Bäuerle^a*

^aInstitute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

^bInstitute of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

*E-mail: <u>peter.baeuerle@uni-ulm.de</u>

Solvent Blend PCE Reference [%] Tetrahydrofuran SM:PC71BM 2.65 [1] Benzaldehyde/mesitylene (80:20) N(Ph-2T-DCN-Et)/PC71BM 3.75 [2] 2-Methyltetrahydrofuran $X2:PC_{61}BC_8$ 5.10 [3] o-Xylene + 1% MN DPPEZnP-O:PC₆₁BM 5.85 [4] SMPV1:PC71BM Toluene 7.04 [5] Toluene/CPME (40:60) SMPV1:PC₆₁BM 8.10 [6] Carbon disulfide BDTTNTTR: PC₇₁BM 10.02 [7] Carbon disulfide BDTSTNTTR: PC71BM [7] 11.53

 Table S1. Overview of reported oligomer-based BHJSC with the respectively obtained PCEs using various halogen-free solvents.

Table S2. Solubility parameters and melting temperatures of co-oligomers 1-3 investigated in this study.

Oligomer	Solubility in chloroform [mg mL ⁻¹]	Solubility in ethyl acetate [mg mL ⁻¹]	Solubility in toluene [mg mL ⁻¹]	Solubility in <i>o</i> -xylene [mg mL ⁻¹]	$T_{\rm m}$ [°C] ^a
1	15	7	2	>80	181
2	>120 ^b	3	<1	26	183^{b}

^{*a*}Melting temperatures (T_m) were determined using differential scanning calorimetry. ^{*b*} see ref. 8. ^{*c*} see ref. 9.

Figure S1. TGA and DSC traces of oligomers 1 (green curve), 2 (blue curve), and 3 (red curve).

Figure S2. Absorption spectra (left) and GIXRD diffraction patterns (right) of blends containing co-oligomer **2** and $PC_{71}BM$ (1:2) before (black line) and after SVA (red line). The film was deposited by doctor-blading on a PEDOT:PSS coated glass substrate.

Figure S3. Absorption spectra (left) and GIXRD diffraction patterns (right) of blends containing co-oligomer **3** and $PC_{71}BM$ (1:2) before (black line) and after SVA (red line). The film was deposited by doctor-blading on a PEDOT:PSS coated glass substrate.

Figure S4. AFM images $(10 \times 10 \ \mu\text{m}^2)$ of the topography ($\Delta z = 10 \ \text{nm}$), height profile, and phase ($\Delta \theta = 20^\circ$) of the photoactive blend of **1**:PC₇₁BM deposited by doctor-blading on PEDOT:PSS|glass before (top) and after (bottom) SVA. The average roughness before and after SVA treatment were determined to be 0.55 nm and 1.76 nm, respectively.

Figure S5. AFM images $(10 \times 10 \ \mu\text{m}^2)$ of the topography ($\Delta z = 10 \ \text{nm}$), height profile, and phase ($\Delta \theta = 20^\circ$) of the photoactive blend of **2**:PC₇₁BM deposited by doctor-blading on PEDOT:PSS|glass before (top) and after (bottom) SVA. The average roughness before and after SVA treatment were determined to be 0.31 nm and 1.10 nm, respectively.

Figure S6. AFM images $(10 \times 10 \ \mu\text{m}^2)$ of the topography ($\Delta z=10 \ \text{nm}$), height profile, and phase ($\Delta \theta = 20^\circ$) of the photoactive blend of **3**:PC₇₁BM deposited by doctor-blading on PEDOT:PSS|glass before (top) and after (bottom) SVA. The average roughness before and after SVA treatment were determined to be 0.30 nm and 2.19 nm, respectively.

References

- 1. M. Singh, R. Kurchania, J. A. Mikroyannidis, S. S. Sharma and G. D. Sharma, *J. Mater. Chem. A*, 2013, **1**, 2297-2306.
- 2. I. Burgués-Ceballos, F. Machui, J. Min, T. Ameri, M. M. Voigt, Y. N. Luponosov, S. A. Ponomarenko, P. D. Lacharmoise, M. Campoy-Quiles and C. J. Brabec, *Adv. Funct. Mater.*, 2014, **24**, 1449-1457.

- 3. X. Chen, X. Liu, M. A. Burgers, Y. Huang and G. C. Bazan, *Angew. Chem. Int. Ed.*, 2014, **53**, 14378-14381.
- 4. L. Xiao, C. Liu, K. Gao, Y. Yan, J. Peng, Y. Cao and X. Peng, *RSC Adv.*, 2015, **5**, 92312-92317.
- 5. M. E. Farahat, C.-S. Tsao, Y.-C. Huang, S. H. Chang, W. Budiawan, C.-G. Wu and C.-W. Chu, *J. Mater. Chem. A*, 2016, **4**, 7341-7351.
- 6. M. E. Farahat, P. Perumal, W. Budiawan, Y.-F. Chen, C.-H. Lee and C.-W. Chu, *J. Mater. Chem. A*, 2017, **5**, 571-582.
- 7. J. Wan, X. Xu, G. Zhang, Y. Li, K. Feng and Q. Peng, *Energy Environ. Sci.*, 2017, **10**, 1739-1745,
- 8. I. Ata, S. B. Dkhil, M. Pfannmöller, S. Bals, D. Duché, J.-J. Simon, T. Koganezawa, N. Yoshimoto C. Videlot-Ackermann, O. Margeat, J. Ackermann and P. Bäuerle, *Org. Chem. Front.* (submitted 21.3.2017, QO-RES-03-2017-000222)
- 9 C. D. Wessendorf, G. L. Schulz, A. Mishra. P. Kar, I. Ata, M. Weidelener, M. Urdanpilleta, J. Hanisch, E. Mena-Osteritz, M. Lindén, E. Ahlswede and P. Bäuerle, *Adv. Energy Mater.*, 2014, 4, 1400266-1400276.