Supporting Information

Optimizing the thermoelectric performance of In-Cd codoped

SnTe by introducing Sn vacancy

Xiaofang Tan^{1,2}, Xiaojian Tan¹, Guoqiang Liu^{1,*}, Jingtao Xu^{1,†}, Hezhu Shao¹, Haoyang Hu¹, Min Jin¹, Haochuan Jiang¹, Jun Jiang^{1,‡}

 ¹ Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
² Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China

Supporting Tables

Compositions		Density(ρ , g/cm ³)	Relative density (%)	
SnTe		6.478	99.66	
Sn _{0.97-x} In _x Cd _{0.03} Te	x=0	6.478	99.66	
	<i>x</i> =0.005	6.449	99.22	
	<i>x</i> =0.01	6.489	99.83	
	<i>x</i> =0.015	6.419	98.75	
	z=0.005	6.477	99.65	
$Sn_{0.96\text{-}z}In_{0.01}Cd_{0.03}Te$	<i>z</i> =0.002	6.440	99.08	
	<i>z</i> =0	6.489	99.83	

Table S1. Densities of all samples investigated in this study.

^{*} E-mail: liugq@nimte.ac.cn

[†] E-mail: xujingtao@nimte.ac.cn

[‡]E-mail: jjun@nimte.ac.cn

Table S2. The hole concentration *n*, mobility μ , electrical conductivity σ , Seebeck coefficient *S*, and power factor $S^2\sigma$ of Sn_{0.97-x}In_xCd_{0.03}Te (x = 0, 0.005, 0.01, and 0.015) samples. at room temperature.

Samples	n (10 ²⁰ cm ⁻³)	μ (cm ² V ⁻¹ s ⁻¹)	σ (Scm ⁻¹)	<i>S</i> (μVK ⁻¹)	S ² σ (μWcm ⁻¹ K ⁻²)
x = 0	1.4	142	3331	40	5.4
<i>x</i> = 0.005	1.6	57.9	1438	72	7.4
<i>x</i> = 0.01	2.0	32.2	1160	75	6.3
<i>x</i> = 0.015	3.1	22.1	1094	83	7.6

Supporting Figures

Figure S1. Powder XRD patterns for (a) $Sn_{0.97-x}In_xCd_{0.03}Te$ (x = 0, 0.005, 0.01, 0.015) and (b) $Sn_{0.96-z}In_{0.01}Cd_{0.03}Te$ (z = 0, 0.002, 0.005). No second phase can be observed within the detection limit.

Figure S2. (a)- (d) the EDS mapping for Sn, Te, In and Cd in $Sn_{0.958}In_{0.01}Cd_{0.03}Te$ sample, respectively.

Elements of Sn, Te, In and Cd are all uniformly distributed suggest a homogenous doping of In and Cd.