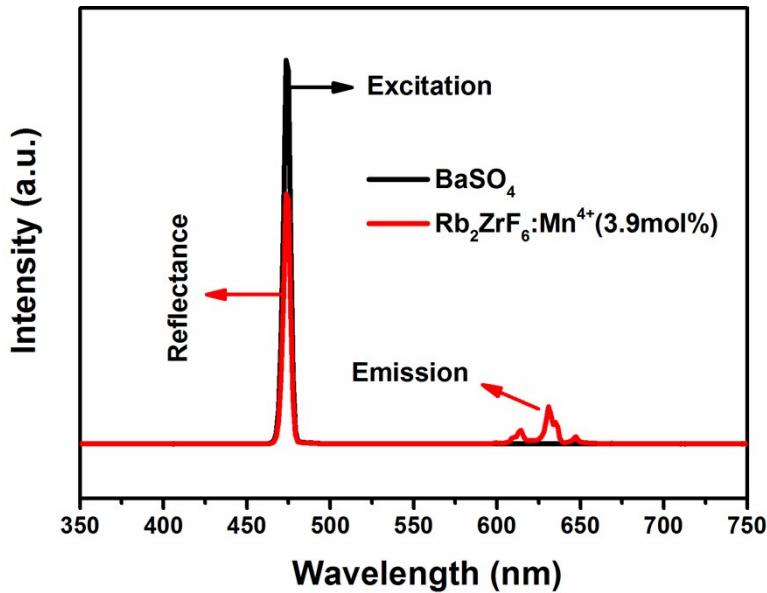


Synthesis and warm-white LED applications of efficient narrow-band red emitting phosphor $\text{Rb}_2\text{ZrF}_6:\text{Mn}^{4+}$


L. Y. Wang, E. H. Song, Y. Y. Zhou, T. T. Deng, S. Ye, and Q. Y. Zhang*

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China

Fig. S1. XRD patterns of $\text{Rb}_2\text{ZrF}_6:\text{Mn}^{4+}$ phosphors doped with different Mn^{4+} concentration.

) Author to whom correspondence should be addressed; Email: qyzhang@scut.edu.cn

Fig. S2. Excitation spectra of BaSO_4 , reflectance and emission spectra of $\text{Rb}_2\text{ZrF}_6:\text{Mn}^{4+}$ (3.9 mol.%).

The quantum efficiency (QE) was calculated as follows:

$$QE = \frac{\int \lambda \cdot P(\lambda) d\lambda}{\int \lambda \{E(\lambda) - R(\lambda)\} d\lambda} \quad (1)$$

where $E(\lambda)/\text{hu}$, $R(\lambda)/\text{hu}$ and $P(\lambda)/\text{hu}$ are the number of photons in the spectrum of excitation, reflectance and emission of the phosphor, respectively. All of spectra were recorded by an optical integrating sphere coupled to the QE-2100 spectrophotometer from Otsuka Photol Electronics at room temperature.

Eq. S1

$$\Delta E = \sqrt{(u'_t - u'_0)^2 + (v'_t - v'_0)^2 + (w'_t - w'_0)^2}$$

where $u' = 4x/(3 - 2x + 12y)$, $v' = 9y/(3 - 2x + 12y)$, and $w' = 1 - u' - v'$. x and y are the chromaticity coordinates in CIE 1931, 0 and t are the chromaticity shift at $20\text{ }^{\circ}\text{C}$ and a given temperature, respectively. u' and v' are the chromaticity coordinates in $u' v'$ uniform color space.